Boundary Value Problems
metrics 2024
Exploring the Frontiers of Mathematical Solutions
Introduction
Boundary Value Problems, published by SPRINGER, is a pioneering open-access journal dedicated to the dissemination of high-quality research in the fields of mathematics, specifically focusing on algebra, number theory, and analysis. With an ISSN of 1687-2770 and an impressive impact factor reflecting its robust contribution to the academic community, particularly as it has achieved a Q3 ranking in both Algebra and Number Theory and Analysis categories in 2023, the journal serves as a vital platform for researchers, professionals, and students alike. Since its inception in 2005, Boundary Value Problems has been committed to fostering innovative breakthroughs and sharing knowledge that drives new perspectives and methodologies within the mathematical sciences. By facilitating open access to its articles, the journal ensures wide visibility and accessibility of cutting-edge research, making it an essential resource for anyone interested in boundary value problems and their multifaceted applications across various disciplines.
Metrics 2024
Metrics History
Rank 2024
Scopus
IF (Web Of Science)
JCI (Web Of Science)
Quartile History
Similar Journals
Proceedings of the Institute of Mathematics and Mechanics
Exploring New Dimensions in Mathematics and MechanicsProceedings of the Institute of Mathematics and Mechanics is a pivotal journal in the field of mathematics, dedicated to the advancement and dissemination of cutting-edge research in various sub-disciplines. Published by INST MATHEMATICS & MECHANICS, NATL ACAD SCIENCES AZERBAIJAN, this journal plays a significant role in bridging local and international research communities. With an ISSN of 2409-4986 and E-ISSN of 2409-4994, it has gained recognition, attaining a Q3 ranking in the Miscellaneous Mathematics category and placing in the 67th percentile on Scopus. Run from 2017 to 2024, the journal serves as an accessible platform for scholars and practitioners, inviting contributions that advance theoretical knowledge and practical applications in mathematics. With an emphasis on quality and innovation, the Proceedings of the Institute of Mathematics and Mechanics stands out as a vital resource for those looking to stay at the forefront of mathematical research and its multifaceted applications in various fields.
St Petersburg Mathematical Journal
Connecting Minds through Cutting-edge Mathematical ResearchSt Petersburg Mathematical Journal, published by the American Mathematical Society, is a distinguished platform that fosters research and discourse in the fields of mathematics, specifically focusing on Algebra and Number Theory, Analysis, and Applied Mathematics. With an ISSN of 1061-0022 and an E-ISSN of 1547-7371, this journal has been a reliable source of cutting-edge mathematical research since its inception in 2003 and continues to publish high-quality content through 2024. Although not open-access, it offers valuable insights and advances the mathematical community's understanding, as indicated by its respectable impact factor and Scopus rankings across various categories—landing in the Q3 quartile across three significant mathematical disciplines. Researchers, professionals, and students are encouraged to contribute and engage with this journal, as it remains a vital resource for promoting collaboration and discovery within the ever-evolving field of mathematics.
DIFFERENTIAL EQUATIONS
Elevating Understanding of Differential EquationsDIFFERENTIAL EQUATIONS, published by PLEIADES PUBLISHING INC, is a prominent journal in the field of mathematics, specifically focusing on the theory and applications of differential equations. Since its inception in 1996, this journal has aimed to provide a platform for high-quality research that pushes the boundaries of knowledge in both pure and applied mathematics. With an ISSN of 0012-2661 and an E-ISSN of 1608-3083, it is indexed in Scopus and categorized in the 2023 Q2 quartile in Analysis and Mathematics (miscellaneous). Although it does not currently offer an Open Access model, it remains a valuable resource for researchers and students looking to deepen their understanding of differential equations. The journal serves as a critical medium for disseminating innovative results and methodologies, making significant contributions to the science of mathematics. Its robust presence in both the general mathematics and analysis rankings highlights its relevance and influence within the academic community, appealing to a diverse range of professionals and scholars.
Electronic Journal of Differential Equations
Unlocking the power of differential equations for all.The Electronic Journal of Differential Equations, published by Texas State University, is a premier open-access platform dedicated to the dissemination of high-quality research in the field of differential equations. Established in 1993, this journal not only promotes the accessibility of mathematical research but also fosters a collaborative approach to innovation and discovery within the mathematical community. With an impressive converged publication record from 1996 to 2024, it serves as a vital resource for researchers, professionals, and students alike, showcasing significant contributions to the discipline. Highlighted in the 2023 Scopus ranking, the journal stands in the Q3 category for Analysis with a current rank of #120 among 193 journals, placing it in the 38th percentile. The journal's commitment to open access ensures that groundbreaking findings are freely available to all, thereby enhancing its impact and reach in the ever-evolving landscape of mathematical analysis.
International Journal of Differential Equations
Unlocking Solutions with Rigorous Peer-Reviewed ResearchThe International Journal of Differential Equations is a premier platform for scholars and practitioners in the field of mathematics, dedicated to advancing the study of differential equations and their extensive applications. Published by Hindawi Ltd, this open access journal, which has been available since 2010, aims to bridge the gap in research by providing a venue for significant findings, innovative methodologies, and impactful applications. Operating under rigorous peer-review standards, it holds a Q3 ranking in both Analysis and Applied Mathematics for 2023, demonstrating its growing influence within these domains. With a clear focus on fostering interdisciplinary research, the journal invites contributions that explore theoretical advancements as well as practical implementations of differential equations. By making high-quality research freely accessible, the International Journal of Differential Equations plays a crucial role in empowering academics and industry professionals alike, enhancing collaboration and knowledge-sharing in this vital area of mathematical science.
Journal of Fixed Point Theory and Applications
Pioneering Research in Geometry and Topology.Journal of Fixed Point Theory and Applications is a prestigious academic journal published by SPRINGER BASEL AG, dedicated to advancing research in the fields of applied mathematics, geometry and topology, and modeling and simulation. With an impressive convergence of research spanning from 2007 to 2024, this journal has established itself as a pivotal platform for disseminating innovative findings and theoretical developments. The journal holds a Q2 quartile in multiple mathematics categories, demonstrating its significant impact and standing within the academic community, particularly evident in its Scopus rankings where it is positioned in the 89th percentile for Geometry and Topology. Although it operates without an open access model, the journal's rigorous peer-review process ensures the highest standards of quality, making it an invaluable resource for researchers, professionals, and students seeking to explore the dynamic interactions between fixed point theory and its diverse applications. Set in Basel, Switzerland, the journal embodies an international scope, inviting contributions that push the boundaries of mathematical research.
Electronic Journal of Qualitative Theory of Differential Equations
Pioneering Open Access Scholarship in Differential EquationsThe Electronic Journal of Qualitative Theory of Differential Equations, published by the esteemed UNIV SZEGED's BOLYAI INSTITUTE in Hungary, is a prominent platform in the realm of applied mathematics, recognized for its rich contributions to the field since its inception in 1998. With an ISSN of 1417-3875 and open access format, the journal ensures that cutting-edge research is accessible to a global audience, fostering collaboration and knowledge exchange among researchers, professionals, and students alike. It holds a commendable Q2 ranking in Applied Mathematics, reflecting its commitment to high-quality scholarship, and maintains a respectable Scopus rank, positioned at #432 out of 635. Covering a wide spectrum of qualitative theories related to differential equations, the journal guides its readers through the complexities of mathematical theories and applications, making it an essential resource for anyone looking to deepen their understanding in this vital area of study. The journal's focus on innovative and interdisciplinary approaches ensures that it remains at the forefront of mathematical research, ultimately contributing to advancements in the field.
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS
Connecting Research with Real-World ImpactNONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, published by PERGAMON-ELSEVIER SCIENCE LTD, is a premier academic journal dedicated to advancing the field of nonlinear analysis through rigorous research and practical applications. With an impressive impact factor and categorized in the Q1 quartile across multiple disciplines including applied mathematics, computational mathematics, and engineering, this journal stands as a vital resource for researchers, professionals, and students. Its extensive scope encompasses significant contributions from the domains of economics, medicine, and various engineering fields, making it a leading platform for interdisciplinary exchange. The journal's commitment to showcasing innovative methodologies and solutions from 2000 to 2025 not only enhances its academic prestige but also fosters real-world impact, thus catering to a diverse scholarly audience eager to explore the complexities and potentials of nonlinear phenomena. Access options vary, ensuring a wide dissemination of knowledge to drive future discoveries in this dynamic area of study.
Georgian Mathematical Journal
Connecting mathematicians through cutting-edge research.Georgian Mathematical Journal, published by Walter de Gruyter GmbH, is a prestigious academic journal dedicated to the field of mathematics, particularly in its multifaceted applications and theoretical explorations. With an ISSN of 1072-947X and an E-ISSN of 1572-9176, this journal is indexed within notable databases and holds a strong position as evidenced by its Q2 ranking in the Mathematics (miscellaneous) category as of 2023 and a ranking of #140 out of 399 in the general mathematics Scopus category, placing it in the 65th percentile for research visibility. Since its inception in 1994, the journal has continued to evolve, aiming to foster innovative research and scholarly communication among mathematicians worldwide. Although it does not offer Open Access, the journal’s commitment to quality and rigor ensures that published works are of high relevance, appealing to researchers, educators, and students who are dedicated to advancing mathematical knowledge across diverse domains.
Results in Mathematics
Elevating Mathematical Discourse with High-Quality Research.Results in Mathematics, published by SPRINGER BASEL AG, is a prestigious academic journal dedicated to advancing the field of mathematics since its inception in 1978. Based in Switzerland, this journal has garnered a significant reputation, holding a Q2 ranking in both Applied Mathematics and miscellaneous Mathematics categories according to the latest 2023 metrics. The journal is a vital resource for researchers, professionals, and students, encouraging open dialogue about emerging mathematical concepts and methodologies. Our editorial objective is to publish high-quality research articles that contribute to theoretical advancements and practical applications in mathematics. Although it does not currently offer open access options, it provides in-depth studies and articles that fortify the knowledge base within the mathematical community. With a commitment to innovation and academic rigor, Results in Mathematics continues to serve as an essential platform for scholarly communication and exploration.