JOURNAL OF COMBINATORIAL THEORY SERIES B
Scope & Guideline
Exploring the Depths of Discrete Mathematics
Introduction
Aims and Scopes
- Graph Theory:
The journal focuses heavily on various aspects of graph theory, including but not limited to graph coloring, graph embeddings, and the study of specific graph classes. It encompasses both classical and contemporary problems in the field. - Matroid Theory:
Research related to matroids, including their properties, applications, and connections to graph theory, is a core area of interest. The journal publishes papers that explore matroid structures, matroid intersections, and their combinatorial properties. - Extremal Combinatorics:
Many papers investigate extremal problems in combinatorics, where researchers study the maximum or minimum size of a collection of finite objects satisfying certain properties. This includes Turán-type problems and results related to extremal graph theory. - Algorithmic and Computational Aspects:
The journal also covers algorithmic approaches to combinatorial problems, including polynomial time algorithms, complexity analysis, and combinatorial optimization problems. - Applications of Combinatorial Structures:
Papers that explore the applications of combinatorial structures in fields such as computer science, network theory, and discrete mathematics are also a focus, highlighting the practical implications of theoretical findings.
Trending and Emerging
- Random Graphs and Probabilistic Methods:
There is a noticeable increase in research related to random graphs and the application of probabilistic techniques in combinatorial problems. This trend reflects a growing interest in understanding the behavior of large random structures. - Algebraic Methods in Combinatorics:
Emerging themes include the use of algebraic techniques to solve combinatorial problems, particularly in matroid theory and graph theory. This includes studies on the interplay between algebra and combinatorial structures. - Network Theory and Applications:
Papers exploring the applications of combinatorial structures in network theory are on the rise, indicating a trend toward practical applications of combinatorial research in real-world scenarios, such as social networks and communication systems. - Interdisciplinary Approaches:
There is an increasing trend towards interdisciplinary research that combines combinatorial theory with other fields such as computer science, physics, and biology, reflecting a broader application of combinatorial concepts. - Extremal and Structural Graph Theory:
Recent publications indicate a growing interest in extremal and structural graph theory, with a focus on understanding the limits of graph properties and their implications, suggesting an active exploration of these foundational aspects.
Declining or Waning
- Classical Ramsey Theory:
While Ramsey theory has traditionally been a significant area of study, recent publications indicate a diminishing emphasis on classical Ramsey problems and their applications in combinatorial contexts. - Geometric Combinatorics:
The exploration of geometric aspects of combinatorics, including topics such as convex hulls and arrangements of geometric objects, has become less frequent in recent years, potentially overshadowed by more abstract combinatorial concepts. - Graph Minors and Excluded Minors:
Though still relevant, the focus on graph minors and excluded minor results appears to be waning, with fewer papers dedicated to this specific area compared to previous years.
Similar Journals
Contributions to Discrete Mathematics
Innovating the discourse in discrete mathematics.Contributions to Discrete Mathematics, published by the Department of Mathematics and Statistics at the University of Calgary, serves as a vital platform for disseminating innovative research within the dynamic field of discrete mathematics and combinatorics. Established in 2008, this journal has rapidly gained recognition, currently holding a Q3 classification in discrete mathematics and combinatorics for 2023. As it aims to foster academic dialogue and share groundbreaking discoveries, the journal showcases high-quality peer-reviewed articles that cover a range of topics, from theoretical explorations to practical applications. Although it currently operates under a traditional subscription model, there is a growing commitment to enhancing access options, ensuring that critical knowledge is available to researchers and practitioners alike. With its notable Scopus ranking of #50 out of 92 within its category, this journal is positioned as an important resource for students, academics, and industry professionals who seek to stay at the forefront of discrete mathematics research.
GRAPHS AND COMBINATORICS
Shaping the future of mathematical theory and practice.GRAPHS AND COMBINATORICS, published by SPRINGER JAPAN KK, is a premier academic journal dedicated to advancing the field of discrete mathematics and combinatorial theory. ISSN 0911-0119 and E-ISSN 1435-5914 signify its scholarly accessibility, providing a platform for the dissemination of cutting-edge research from 1985 to the present. With a 2023 quartile ranking of Q2 in Discrete Mathematics and Combinatorics and Q3 in Theoretical Computer Science, the journal showcases influential studies that significantly contribute to these domains. Situated in Tokyo, Japan, it harnesses a global perspective on contemporary mathematical challenges. Although lacking open access options, GRAPHS AND COMBINATORICS remains a vital resource for researchers, professionals, and students seeking to deepen their understanding of mathematical graph theory and combinatorial structures. Engage with its significant findings and join the discourse that shapes future research and applications in these inspiring fields.
INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE
Catalyzing Insights in Computer Science ResearchThe International Journal of Foundations of Computer Science, published by World Scientific Publishing Co Pte Ltd, is a premier repository for cutting-edge research in the field of computer science, emphasizing foundational theories and methodologies. With an ISSN of 0129-0541 and an E-ISSN of 1793-6373, this journal has established itself as a valuable resource since its inception in 2000, continuously contributing to scholarly discourse up to the present year, 2024. It is ranked in the Q2 quartile of computer science categories, indicating its notable impact and relevance within the academic community, particularly in miscellaneous subsections of the field. While it does not currently offer open access options, it remains a crucial platform for researchers, professionals, and students seeking to deepen their understanding of computational foundations, algorithms, and theoretical frameworks. The journal encourages submissions that push the boundaries of knowledge and invites innovative approaches that address contemporary challenges in computer science.
JOURNAL OF GRAPH THEORY
Elevating Research Standards in Geometry and TopologyJOURNAL OF GRAPH THEORY, published by WILEY, stands as a pivotal resource in the fields of Discrete Mathematics and Combinatorics, as well as Geometry and Topology. Since its inception in 1977, this esteemed journal has fostered the dissemination of influential research, currently categorized in the prestigious Q1 quartile according to the latest metrics for 2023. With an ISSN of 0364-9024 and an E-ISSN of 1097-0118, it caters to a global readership of researchers, professionals, and students dedicated to advancing their knowledge in graph theory. By maintaining a strong rank in Scopus—39th out of 106 in Geometry and Topology, and 38th out of 92 in Discrete Mathematics and Combinatorics—it reflects its significance and impact within the academic community. Although it does not offer open-access options, its rigorous peer-review process ensures that only high-quality original research is published, thus reinforcing its reputation as a leading journal in this mathematical domain.
AKCE International Journal of Graphs and Combinatorics
Exploring the Frontiers of Discrete Mathematics.AKCE International Journal of Graphs and Combinatorics, published by TAYLOR & FRANCIS LTD, serves as a significant platform in the field of Discrete Mathematics and Combinatorics. With its commitment to open access since 2015, the journal ensures that cutting-edge research is readily available to a global audience, promoting the dissemination of knowledge and high-quality scholarship. Recognized for its impact in the discipline, the journal is currently ranked Q3 in its category for 2023 and holds a commendable Scopus ranking, falling within the 69th percentile. Researchers, professionals, and students alike will find invaluable insights and contributions in this journal, which spans a wide range of topics related to graph theory and combinatorial structures. Operating from its base in India, and converging from 2011 to 2024, the AKCE International Journal invites submissions that push the boundaries of mathematical exploration and foster innovative methodologies in a rapidly evolving field.
COMBINATORICS PROBABILITY & COMPUTING
Shaping the Future of Probability and Combinatorial ScienceCOMBINATORICS PROBABILITY & COMPUTING is a premier journal published by Cambridge University Press, focusing on the cutting-edge fields of combinatorics, probability, and their computational aspects. Established in 1992 and set to continue its impactful discourse through 2024, this journal holds a distinguished reputation, reflected in its Q1 ranking in applied mathematics, computational theory, and statistics, showcasing its pivotal role in advancing research in these areas. With an ISSN of 0963-5483 and an E-ISSN of 1469-2163, the journal welcomes high-quality papers that contribute to the theoretical foundations and practical applications of the disciplines. While it is not available as open access, its accessibility through institutional subscriptions ensures wide readership within academia. The journal is a vital resource for researchers, professionals, and students alike, providing a platform for innovative ideas and pioneering research that shapes the future of mathematics and computer science.
Annals of Combinatorics
Illuminating the Path of Combinatorial DiscoveriesAnnals of Combinatorics, published by Springer Basel AG, serves as a premier platform for innovation and research in the field of discrete mathematics and combinatorics. With an ISSN of 0218-0006 and an E-ISSN of 0219-3094, the journal captures the ongoing developments and breakthroughs that characterize this dynamic discipline, which plays a crucial role in various applications such as computer science, optimization, and statistical mechanics. The journal has been recognized as part of the Q2 category in the 2023 rankings for discrete mathematics and combinatorics, reflecting its significant contribution to the academic community. Researchers and educators alike benefit from its insightful articles that not only cover theoretical advancements but also practical implications. With convergence years spanning from 2005 to 2024, the Annals of Combinatorics continues to be an essential resource for anyone looking to deepen their understanding and explore new frontiers in combinatorial research.
ACM Transactions on Computation Theory
Unveiling Insights in Computational Models and Algorithms.ACM Transactions on Computation Theory, published by the Association for Computing Machinery, is a prestigious journal dedicated to advancing the field of computation theory and theoretical computer science. With an ISSN of 1942-3454 and an E-ISSN of 1942-3462, this journal serves as a vital resource for researchers and professionals seeking to explore groundbreaking developments in computational models, algorithms, and their mathematical foundations. The journal's rigorous standards have earned it a significant position within the academic community, as evidenced by its 2023 category quartiles, ranking in the Q1 category for Computational Theory and Mathematics and Q2 for Theoretical Computer Science. Although it operates through traditional subscription access, it maintains a critical role in disseminating cutting-edge research and fostering collaboration among experts in the United States and beyond. As an influential platform, ACM Transactions on Computation Theory is committed to contributing to the ongoing dialogue and advancement of computation theory, making it essential reading for anyone passionate about this dynamic field.
DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE
Shaping the Future of Computer Science through Discrete MathematicsDISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, published by DISCRETE MATHEMATICS THEORETICAL COMPUTER SCIENCE in France, stands as a significant open-access journal since 1997, publishing innovative research articles within the intersecting disciplines of discrete mathematics and theoretical computer science. With an ISSN of 1462-7264 and an E-ISSN of 1365-8050, this journal aims to provide a platform for scholarly discourse and dissemination of knowledge, making it accessible to a global audience. It is recognized for its contributions, achieving a Q2 ranking in both Computer Science (Miscellaneous) and Discrete Mathematics and Combinatorics, alongside a Q3 ranking in Theoretical Computer Science as of 2023. The journal’s rigorous selection process ensures that only high-quality research is published, promoting advancements in these critical areas of study. Researchers, professionals, and students alike can benefit from its comprehensive articles that not only enhance theoretical understanding but also foster practical applications in the ever-evolving landscape of computer science.
ADVANCES IN APPLIED MATHEMATICS
Bridging Theory and Practice in Applied MathematicsADVANCES IN APPLIED MATHEMATICS, published by ACADEMIC PRESS INC ELSEVIER SCIENCE, is a prestigious journal that has served the mathematical community since 1980. With its ISSN 0196-8858 and E-ISSN 1090-2074, the journal is based in the United States, specifically in San Diego, CA. As a leading periodical in the field, it holds a notable Q2 ranking in Applied Mathematics and has been consistently ranked in the 43rd percentile among similar journals, illustrating its relevance and impact within the discipline. Although not an Open Access journal, ADVANCES IN APPLIED MATHEMATICS plays a crucial role in disseminating significant research findings, theoretical studies, and innovative applications of mathematics that address real-world problems. Researchers, professionals, and students alike will find valuable insights in its carefully curated publications, making it an essential resource for those looking to advance their understanding and application of mathematics.