Machine Intelligence Research

Scope & Guideline

Elevating the Standards of Machine Intelligence Research

Introduction

Welcome to your portal for understanding Machine Intelligence Research, featuring guidelines for its aims and scope. Our guidelines cover trending and emerging topics, identifying the forefront of research. Additionally, we track declining topics, offering insights into areas experiencing reduced scholarly attention. Key highlights include highly cited topics and recently published papers, curated within these guidelines to assist you in navigating influential academic dialogues.
LanguageEnglish
ISSN2731-538x
PublisherSPRINGERNATURE
Support Open AccessNo
CountryChina
TypeJournal
Convergefrom 2022 to 2024
AbbreviationMACH INTELL RES / Mach. Intell. Res.
Frequency6 issues/year
Time To First Decision-
Time To Acceptance-
Acceptance Rate-
Home Page-
AddressCAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND

Aims and Scopes

Machine Intelligence Research focuses on advancing the field of machine intelligence through innovative algorithms, models, and applications in various domains. The journal emphasizes interdisciplinary approaches that combine theoretical insights with practical implementations.
  1. Machine Learning and Deep Learning Techniques:
    The journal extensively covers the development and application of machine learning and deep learning methodologies, including supervised, unsupervised, and reinforcement learning approaches.
  2. Artificial Intelligence Applications:
    Research published in the journal explores a wide range of applications of artificial intelligence, including natural language processing, computer vision, robotics, and healthcare.
  3. Model Interpretability and Explainability:
    A significant focus is placed on enhancing the interpretability and explainability of machine learning models to ensure transparency and trust in AI systems.
  4. Multimodal Data Processing:
    The journal addresses the challenges and techniques involved in processing and analyzing multimodal data, integrating information from various sources such as text, images, and audio.
  5. Graph-based Learning and Neural Networks:
    There is a notable emphasis on graph-based learning methods, including graph neural networks, which are used for tasks involving relational data and complex structures.
  6. Federated Learning and Privacy-preserving Techniques:
    Research also delves into federated learning methodologies that allow models to learn from decentralized data while maintaining privacy and security.
  7. Robustness and Security in AI Systems:
    The journal highlights research aimed at improving the robustness and security of AI systems against adversarial attacks and other vulnerabilities.
  8. Cognitive and Brain-inspired Approaches:
    The journal explores cognitive computing and brain-inspired methodologies, drawing parallels between artificial intelligence systems and human cognitive processes.
Machine Intelligence Research is currently exploring several trending and emerging themes that reflect the latest advancements and interests in the field. These themes indicate a shift towards more complex, integrated, and application-driven research.
  1. Trustworthy AI and Ethical Considerations:
    Recent publications highlight a growing concern for trustworthy AI, focusing on privacy, fairness, and robustness, reflecting a broader societal demand for ethical AI systems.
  2. Generative Models and Their Applications:
    There is a surge in research on generative models, particularly in the context of language and image generation, indicating a trend towards creating more sophisticated AI systems capable of generating new content.
  3. Self-supervised and Unsupervised Learning:
    A significant trend is the increased interest in self-supervised and unsupervised learning techniques, which allow models to learn from unlabeled data and reduce the reliance on large labeled datasets.
  4. Cross-disciplinary Approaches:
    Emerging research often combines insights from various disciplines, such as neuroscience, cognitive science, and robotics, to develop more comprehensive AI models.
  5. AI for Healthcare and Medical Applications:
    The application of AI in healthcare, particularly in medical imaging, diagnostics, and personalized medicine, is gaining momentum as researchers seek to leverage AI for improving patient outcomes.
  6. Explainable AI (XAI):
    There is an increasing focus on explainable AI, as researchers aim to develop techniques that allow users to understand and trust AI decisions, especially in critical applications.
  7. Robustness Against Adversarial Attacks:
    Research that addresses the robustness of AI models against adversarial attacks is becoming more prominent, reflecting growing concerns about the security of AI systems.

Declining or Waning

As the field evolves, certain themes within Machine Intelligence Research are experiencing a decline in prominence. This section highlights areas that have seen reduced focus or are becoming less common in recent publications.
  1. Traditional Machine Learning Methods:
    There is a noticeable decrease in research focusing solely on traditional machine learning methods as the field shifts towards more sophisticated deep learning and hybrid approaches.
  2. Basic Image Processing Techniques:
    Research centered on basic image processing techniques is waning as advancements in convolutional neural networks and deep learning have overshadowed simpler methods.
  3. Single-modal Data Analysis:
    The focus on single-modal data analysis is declining as researchers increasingly recognize the benefits of multimodal approaches that combine information from diverse data sources.
  4. Rule-based AI Systems:
    The interest in traditional rule-based AI systems is diminishing as the community gravitates towards data-driven and learning-based approaches.
  5. Basic Theoretical Foundations:
    While foundational theoretical work is essential, the emphasis on basic theoretical studies is decreasing in favor of applied research with practical implications.

Similar Journals

International Journal on Document Analysis and Recognition

Advancing the Frontiers of Document Intelligence
Publisher: SPRINGER HEIDELBERGISSN: 1433-2833Frequency: 4 issues/year

International Journal on Document Analysis and Recognition (IJDAR), published by Springer Heidelberg, stands at the forefront of research and advancements in the field of document analysis, computer vision, and pattern recognition. With its ISSN 1433-2833 and E-ISSN 1433-2825, the journal is an essential resource for researchers and practitioners focusing on innovations in automatic document processing, image analysis, and artificial intelligence applications in document retrieval and recognition. Recognized as a Q1 journal in multiple relevant categories, including Computer Science Applications, Computer Vision and Pattern Recognition, and Software, IJDAR boasts impressive Scopus rankings that position it among the top-tier publications in these domains. The journal’s converged publication years from 1998 to 2024 offer a rich repository of knowledge essential for both theoretical and practical advancements, ensuring that researchers, professionals, and students can keep pace with the latest findings and methodologies. Access options may vary, but the journal continuously strives to facilitate the dissemination of high-quality research that contributes significantly to the academic discourse in document analysis and recognition.

COMPUTER VISION AND IMAGE UNDERSTANDING

Transforming Pixels into Knowledge
Publisher: ACADEMIC PRESS INC ELSEVIER SCIENCEISSN: 1077-3142Frequency: 12 issues/year

COMPUTER VISION AND IMAGE UNDERSTANDING is a leading academic journal published by Academic Press Inc, Elsevier Science, dedicated to the advancement of the fields of computer vision, image understanding, and pattern recognition. Since its inception in 1993, this esteemed publication has garnered a reputation for excellence, achieving a remarkable Q1 ranking in the categories of Computer Vision and Pattern Recognition, Signal Processing, and Software as of 2023. With its robust impact factor and high visibility in the scientific community—ranking #22 out of 106 in Computer Vision and Pattern Recognition and #27 out of 131 in Signal Processing—this journal serves as a vital resource for researchers, professionals, and students looking to explore and contribute to state-of-the-art developments. Although it does not operate under an Open Access model, its rigorous peer-reviewed content ensures quality and relevance in a rapidly evolving technological landscape. The journal’s commitment to fostering innovation makes it an essential tool for anyone engaged in the study and application of computer vision technologies.

Vietnam Journal of Computer Science

Empowering researchers to shape the future of technology.
Publisher: WORLD SCIENTIFIC PUBL CO PTE LTDISSN: 2196-8888Frequency: 4 issues/year

Vietnam Journal of Computer Science, published by World Scientific Publishing Co Pte Ltd, serves as a prominent platform for researchers and professionals in the rapidly evolving field of computer science. Launched as an Open Access journal in 2013, it aims to disseminate high-quality research across various subfields, including Artificial Intelligence, Computational Theory and Mathematics, Computer Vision, and Information Systems. With its ISSN 2196-8888 and E-ISSN 2196-8896, the journal provides valuable insights and contributes to the growing body of knowledge in computer science, particularly in Southeast Asia. Despite its relatively recent establishment, the journal has achieved significant rankings, including Q3 status in multiple categories and notable visibility in Scopus metrics, evidencing its commitment to fostering innovative research. This journal is essential for those looking to stay at the forefront of computational advancements and applications, particularly in Vietnam and beyond, facilitating an engaging dialogue among scholars and industry professionals.

IMAGING SCIENCE JOURNAL

Innovating Insights in Computer Vision and Media
Publisher: TAYLOR & FRANCIS LTDISSN: 1368-2199Frequency: 8 issues/year

Imaging Science Journal, published by Taylor & Francis Ltd, serves as a vital resource for researchers and professionals in the fields of computer vision, pattern recognition, and media technology. With an ISSN of 1368-2199 and an E-ISSN of 1743-131X, this journal has been fostering scholarly dialogue since its inception in 1997, with a converged content offering extending through 2024. Its categorization in Quartile 4 in Computer Vision and Pattern Recognition and Quartile 3 in Media Technology highlights its relevance and contributions to emerging trends in these domains. Although it ranks 36th in the Engineering - Media Technology category and 96th in Computer Science - Computer Vision and Pattern Recognition, its innovative research and insights continue to attract the attention of scholars dedicated to advancing knowledge at the intersection of imaging technologies. Offering versatile access options, this journal is essential for students, researchers, and professionals aiming to stay informed and engaged in the rapidly evolving landscape of imaging science.

NEUROCOMPUTING

Transforming Insights into Intelligent Solutions
Publisher: ELSEVIERISSN: 0925-2312Frequency: 18 issues/year

NEUROCOMPUTING is a premier academic journal published by ELSEVIER, specializing in the interdisciplinary fields of Artificial Intelligence, Cognitive Neuroscience, and Computer Science Applications. With an impressive impact factor and a Q1 ranking in its relevant categories for 2023, NEUROCOMPUTING is recognized as a leader in fostering innovative research and providing a platform for ground-breaking studies. The journal’s scope covers the convergence of neural computation and artificial intelligence, making it essential reading for researchers and professionals seeking to explore the latest advancements and applications in these dynamic fields. For those interested in the cutting-edge intersection of neuroscience and computational techniques, NEUROCOMPUTING offers a wealth of knowledge that significantly contributes to both theoretical and practical advancements. The journal is dedicated to publishing high-quality, peer-reviewed articles and is an invaluable resource for students and established scholars alike, looking to stay at the forefront of research trends.

NEW GENERATION COMPUTING

Catalyzing Collaboration Among Computing Experts
Publisher: SPRINGERISSN: 0288-3635Frequency: 4 issues/year

NEW GENERATION COMPUTING is a prominent academic journal published by SPRINGER, specializing in the dynamic fields of Computer Networks, Hardware and Architecture, Software Engineering, and Theoretical Computer Science. With a commitment to disseminating high-quality research since its inception in 1983 and extending its coverage to 2024, this journal occupies a vital role in advancing knowledge and innovation within these critical domains. Holding prestigious Q2 rankings in Computer Networks and Communications, Hardware and Architecture, and Software, as well as a Q3 ranking in Theoretical Computer Science for 2023, NEW GENERATION COMPUTING attracts significant contributions from scholars and professionals around the globe. Researchers will find its rigorous peer-review process ensures the publication of impactful studies, while students gain access to cutting-edge research that shapes contemporary computing practices. Though it does not offer open access, the journal remains an invaluable resource in the academic community, fostering collaboration and dialogue among experts aiming to push the boundaries of technology.

Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence

Championing Open Access for Global AI Discourse.
Publisher: ASOC ESPANOLA INTELIGENCIA ARTIFICIALISSN: 1137-3601Frequency: 2 issues/year

Inteligencia Artificial-Iberoamerican Journal of Artificial Intelligence, published by the ASOC ESPANOLA INTELIGENCIA ARTIFICIAL, serves as a pivotal platform for disseminating cutting-edge research in the burgeoning fields of artificial intelligence and software development. Established in 1997 as an Open Access journal, it ensures broad accessibility to its scholarly content, thus fostering collaboration and knowledge exchange amongst researchers, professionals, and students across the globe. Based in Valencia, Spain, the journal currently operates within a significant timeline spanning from 2004 to 2010 and 2012 to 2024, enabling continual contributions to the academic discourse. Although it holds a Q4 quartile ranking in both the Artificial Intelligence and Software categories and a notable yet competitive Scopus ranking among its peers, the journal remains committed to advancing the understanding and application of sophisticated AI methodologies. As it continues to embrace innovative research, this journal stands as a crucial reference point for those keenly navigating the complexities of artificial intelligence in a rapidly evolving digital landscape.

COMPUTATIONAL LINGUISTICS

Unlocking New Frontiers in Language and Technology
Publisher: MIT PRESSISSN: 0891-2017Frequency: 4 issues/year

COMPUTATIONAL LINGUISTICS is a premier academic journal published by MIT Press, focusing on the intersection of linguistics and artificial intelligence. With the ISSN 0891-2017 and the E-ISSN 1530-9312, the journal serves as a key resource for researchers and practitioners in computational linguistics, a field that plays a crucial role in advancing language processing technologies. Since adopting an Open Access model in 2017, the journal has broadened its accessibility, encouraging a global exchange of ideas and research findings. It consistently ranks within the top quartiles of its respective fields, achieving Q1 status in Artificial Intelligence, Computer Science Applications, and Linguistics and Language as of 2023. This notable standing is further reflected in its Scopus rankings, placing it in the 99th percentile for Language and Linguistics, and maintaining a prestigious position in various computer science categories. The journal publishes cutting-edge research, theoretical frameworks, and practical applications, and aims to foster interdisciplinary collaboration among linguists, computer scientists, and AI specialists. As the field evolves, COMPUTATIONAL LINGUISTICS remains an essential platform for disseminating transformative ideas and pioneering work that shapes the future of language and technology.

Intelligenza Artificiale

Pioneering Insights in Artificial Intelligence
Publisher: IOS PRESSISSN: 1724-8035Frequency: 2 issues/year

Intelligenza Artificiale is a prominent academic journal dedicated to advancing the field of artificial intelligence, published by IOS PRESS, a renowned publisher in the scientific community. Based in the Netherlands, this journal's ISSN is 1724-8035 and its E-ISSN is 2211-0097. With a current impact factor that reflects its relevance in the scholarly landscape, it operates in the Q2 quartile of the Artificial Intelligence category as of 2023, which ranks it notably at #200 out of 350 within its field according to Scopus data. The journal provides a valuable platform for researchers, professionals, and students to disseminate and access cutting-edge findings from 2018 to 2024, focusing on the innovative applications and theoretical developments in artificial intelligence. With its commitment to fostering academic dialogue and collaboration, Intelligenza Artificiale is essential for anyone looking to stay at the forefront of AI research and practice.

Cognitive Computation and Systems

Fostering Collaboration in Cognitive Computation and Systems.
Publisher: WILEYISSN: Frequency: 4 issues/year

Cognitive Computation and Systems is an innovative open-access journal published by Wiley, dedicated to advancing the fields of Artificial Intelligence, Cognitive Neuroscience, and Computer Science Applications. Based in the United Kingdom, this journal has established itself as a key resource for researchers, students, and professionals alike since its inception in 2019. With a focus on the convergence of cognitive theories and computational methodologies, Cognitive Computation and Systems aims to publish high-quality research that bridges holistic cognitive processing with algorithmic design. Although the journal is currently categorized in the lower quartiles of its fields, it provides a unique platform for disseminating pioneering ideas that can drive the vital intersection of computer vision, pattern recognition, and psychology. Scholars can take advantage of its open-access model, ensuring that research findings are freely available, thus promoting wider knowledge sharing and collaboration within these rapidly evolving domains. With its ambitious scope and commitment to quality, this journal is poised to make a significant impact in its respective fields.