Machine Learning and Knowledge Extraction

Scope & Guideline

Connecting Minds to Foster Knowledge in Machine Learning

Introduction

Welcome to your portal for understanding Machine Learning and Knowledge Extraction, featuring guidelines for its aims and scope. Our guidelines cover trending and emerging topics, identifying the forefront of research. Additionally, we track declining topics, offering insights into areas experiencing reduced scholarly attention. Key highlights include highly cited topics and recently published papers, curated within these guidelines to assist you in navigating influential academic dialogues.
LanguageEnglish
ISSN-
PublisherMDPI
Support Open AccessNo
Country-
Type-
Converge-
AbbreviationMACH LEARN KNOW EXTR / Mach. Learn. Knowl. Extr.
Frequency4 issues/year
Time To First Decision-
Time To Acceptance-
Acceptance Rate-
Home Page-
AddressST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND

Aims and Scopes

The journal 'Machine Learning and Knowledge Extraction' is a multidisciplinary platform focused on advancing the integration of machine learning techniques across various domains, emphasizing the extraction and interpretation of knowledge from complex data. Its core areas of research reflect innovative methodologies and applications that enhance understanding and decision-making processes.
  1. Machine Learning Techniques and Algorithms:
    The journal publishes research on various machine learning algorithms, including supervised, unsupervised, and reinforcement learning, exploring their theoretical foundations and practical applications.
  2. Knowledge Extraction and Interpretation:
    A significant focus is on methods for extracting meaningful insights and knowledge from large datasets, including explainable AI (XAI) approaches that enhance the interpretability of machine learning models.
  3. Interdisciplinary Applications:
    The journal highlights applications of machine learning in diverse fields such as healthcare, finance, environmental science, and social sciences, showcasing how these techniques can solve real-world problems.
  4. Graph and Network Analysis:
    Research on graph-based machine learning and network analysis is a core area, emphasizing the study of relationships and structures within data, particularly in complex systems.
  5. Data Quality and Preprocessing:
    The journal emphasizes the importance of data preprocessing techniques, including feature selection, dimensionality reduction, and handling imbalanced datasets, which are critical for improving model performance.
  6. Ethics and Fairness in AI:
    There is an increasing emphasis on the ethical implications of AI, focusing on fairness, accountability, and transparency in machine learning systems.
  7. Emerging Technologies:
    Exploration of cutting-edge technologies such as quantum computing, federated learning, and deep learning frameworks is a distinctive aspect of the journal, showcasing innovative approaches to machine learning.
Recent publications in 'Machine Learning and Knowledge Extraction' reflect emerging themes and trends that highlight the dynamic nature of the field. These themes indicate a growing interest in integrating machine learning with other disciplines and addressing contemporary challenges.
  1. Explainable Artificial Intelligence (XAI):
    There is a rising trend in research focused on XAI, which aims to make machine learning models more interpretable. This is increasingly relevant in applications where understanding model decisions is critical, such as healthcare and finance.
  2. Federated Learning and Privacy-Preserving Techniques:
    Emerging interest in federated learning underscores the importance of privacy in machine learning, allowing models to be trained across decentralized data sources without compromising individual data privacy.
  3. Integration of Deep Learning with Traditional Methods:
    Research combining deep learning techniques with traditional statistical methods is trending, as scholars seek to leverage the strengths of both approaches for improved model performance.
  4. Sustainability and Environmental Monitoring:
    An increase in studies addressing environmental issues through machine learning indicates a trend towards applying these technologies in sustainability efforts, such as climate change modeling and resource management.
  5. Human-Centered AI and Ethical Considerations:
    Growing attention to the ethical implications of AI, including fairness, accountability, and user-centered design, reflects a societal demand for responsible AI development.
  6. Multimodal Data Analysis:
    There is an emerging focus on methodologies that analyze and integrate multimodal data (e.g., text, images, and sensor data), enhancing the robustness and applicability of machine learning models.

Declining or Waning

As the field of machine learning evolves, certain themes have seen a decline in publication frequency and focus within the journal. These waning areas may reflect shifting research priorities or the maturation of specific methodologies.
  1. Traditional Statistical Methods:
    There has been a noticeable decrease in the publication of papers focused solely on traditional statistical methods for data analysis, as the field moves towards more complex machine learning approaches.
  2. Low-Complexity Models for Simple Tasks:
    Research centered on low-complexity models for straightforward tasks has diminished, indicating a shift towards leveraging more sophisticated algorithms that can handle complex data.
  3. Basic Machine Learning Tutorials:
    The frequency of publications related to introductory tutorials on basic machine learning concepts has declined, as the audience for the journal increasingly seeks advanced and specialized content.
  4. Single-Domain Focus Studies:
    Papers focusing exclusively on single-domain applications with minimal interdisciplinary insights have become less common, as researchers now emphasize cross-domain applications and collaborative studies.
  5. Non-Explainable AI Approaches:
    There is a waning interest in non-explainable AI methodologies, as the demand for transparency and interpretability in machine learning models becomes more pronounced.

Similar Journals

ACM Transactions on Intelligent Systems and Technology

Elevating Knowledge in AI and Theoretical Computer Science
Publisher: ASSOC COMPUTING MACHINERYISSN: 2157-6904Frequency: 6 issues/year

ACM Transactions on Intelligent Systems and Technology, published by the Association for Computing Machinery (ACM), is a leading peer-reviewed journal dedicated to the rapid dissemination of innovative research in the fields of Artificial Intelligence and Theoretical Computer Science. With an impressive Impact Factor and a strong H-Index, it boasts a premier standing in the academic community, being ranked Q1 in both AI and Theoretical Computer Science categories as of 2023. This journal serves as a critical platform for researchers, professionals, and students aiming to contribute to and stay informed about the latest developments in intelligent systems and technology. While there are currently no open-access options, readers can explore invaluable insights into current trends and methodologies from 2010 to 2024, making it an essential resource for anyone passionate about advancing their knowledge in these rapidly evolving domains. The journal continues to foster collaboration and innovation, reflecting the forefront of research where technology intersects with intelligent systems.

Frontiers of Computer Science

Empowering the Global Academic Community through Open Access
Publisher: HIGHER EDUCATION PRESSISSN: 2095-2228Frequency: 1 issue/year

Frontiers of Computer Science is a leading peer-reviewed journal dedicated to advancing the field of computer science through the publication of high-quality research articles, reviews, and theoretical discussions. Published by HIGHER EDUCATION PRESS, this journal has gained significant recognition, currently boasting a prestigious impact factor and ranking in the Q1 quartile for both Computer Science (miscellaneous) and Theoretical Computer Science categories in 2023. With a focus on the intersection of computational theory and practical applications, it serves as a vital platform for researchers, professionals, and students alike who are eager to contribute to and stay updated with groundbreaking developments. The journal’s scope encompasses a wide range of topics, reflecting the diverse nature of computer science today. Operating from Beijing, China, it emphasizes Open Access, ensuring that vital research is readily available to the global academic community. With its convergence period spanning from 2013 to 2024, Frontiers of Computer Science remains committed to fostering innovation and scholarly dialogue that drives the future of technology.

Applied Computing Review

Fostering Insightful Research for Industry Challenges
Publisher: ASSOC COMPUTING MACHINERYISSN: 1559-6915Frequency: 4 issues/year

Applied Computing Review is a prominent academic journal published by the Association for Computing Machinery (ACM), an esteemed organization known for advancing the computing profession. Focusing on the intersection of practical applications and theoretical foundations, this journal serves as a vital platform for disseminating research in the field of applied computing, facilitating knowledge sharing among researchers, professionals, and students alike. With an ISSN of 1559-6915, the journal encompasses a wide array of topics including software engineering, data analytics, and application development, addressing current trends and challenges in the industry. Although it does not offer open access, its rigorous peer-review process ensures high-quality publications that significantly contribute to the discipline. Positioned within a competitive landscape, Applied Computing Review is dedicated to fostering innovation and providing insightful perspectives that inspire further research, thereby solidifying its importance in the field of applied computing.

Quantum Machine Intelligence

Exploring the synergy between quantum computing and machine intelligence.
Publisher: SPRINGERNATUREISSN: 2524-4906Frequency: 1 issue/year

Quantum Machine Intelligence is a leading academic journal published by Springer Nature, focusing on the rapidly evolving intersection of quantum computing and artificial intelligence. With an impressive impact factor reflected in its prestigious ranking in various categories—Q1 in Applied Mathematics, Computational Theory and Mathematics, and Theoretical Computer Science, alongside Q2 in Artificial Intelligence and Software—this journal serves as a vital platform for disseminating innovative research from 2019 to 2024. Researchers, professionals, and students are encouraged to engage with the journal’s content, which features high-quality peer-reviewed articles that explore theoretical foundations and practical applications of quantum technologies in machine intelligence. Although the journal operates under traditional subscription models, it is committed to advancing open academic discourse and accessibility in the digital age. With Scopus rankings that place it among the top echelons of its fields, the journal is an essential resource for anyone interested in the transformative potential of quantum algorithms and AI.

MACHINE LEARNING

Advancing the Frontiers of Artificial Intelligence
Publisher: SPRINGERISSN: 0885-6125Frequency: 9 issues/year

MACHINE LEARNING is a premier academic journal published by SPRINGER, dedicated to advancing the field of artificial intelligence and software engineering. Established in 1986, this journal has consistently showcased pioneering research and innovative methodologies that facilitate the understanding and application of machine learning techniques across various domains. With an impressive impact factor reflecting its high-quality publications, it is classified within the top quartile (Q1) in both Artificial Intelligence and Software categories as of 2023, underscoring its critical role in these fields. The journal boasts significant Scopus rankings, placing it at the 45th and 54th positions, respectively, in Computer Science - Software and Computer Science - Artificial Intelligence, further validating its stature as a vital resource for researchers, professionals, and students alike. While not an open-access journal, MACHINE LEARNING ensures that its comprehensive peer-reviewed articles are widely circulated, fostering academic dialogue and innovation. The journal continues to be a go-to platform for cutting-edge research, providing invaluable insights and contributions that drive the future of machine learning.

SIAM Journal on Mathematics of Data Science

Fostering Collaboration Between Mathematicians and Data Scientists
Publisher: SIAM PUBLICATIONSISSN: Frequency: 4 issues/year

SIAM Journal on Mathematics of Data Science is an esteemed publication within the fields of applied mathematics and data science, published by SIAM PUBLICATIONS. This journal serves as a vital platform for researchers and practitioners, dedicated to disseminating high-quality research that addresses complex mathematical problems arising in the context of data science. The journal aims to bridge the gap between rigorous mathematical theory and practical applications, fostering interdisciplinary collaboration among mathematicians, data scientists, and statisticians. With its commitment to excellence, the SIAM Journal on Mathematics of Data Science contributes significantly to advancing the understanding and development of mathematical methodologies that analyze and interpret large datasets effectively. Researchers and professionals will find it an invaluable resource with its comprehensive articles, insightful reviews, and original research papers, which represent the forefront of innovative mathematical approaches in the evolving landscape of data science. For those interested in contributing to this dynamic field, the journal provides an array of access options tailored to diverse audiences.

JOURNAL OF INTELLIGENT INFORMATION SYSTEMS

Fostering Multidisciplinary Insights in AI and Networks
Publisher: SPRINGERISSN: 0925-9902Frequency: 6 issues/year

The Journal of Intelligent Information Systems, published by Springer since 1992, is a premier academic journal that offers a multidisciplinary platform in the fields of Artificial Intelligence, Computer Networks and Communications, Hardware and Architecture, Information Systems, and Software. With an impressive impact reflected in its 2023 Q2 category rankings across multiple domains and a commendable standing in the Scopus Rankings—ranking #84 in Computer Networks and Communications and #101 in Artificial Intelligence—the journal is recognized for its contribution to advancing knowledge and innovation. Although it is not an open-access journal, its accessibility through institutional subscriptions ensures that a wide range of researchers, professionals, and students can engage with high-quality, peer-reviewed research that addresses the latest advancements and trends in intelligent systems. For over three decades, this journal has effectively bridged gaps between academia and industry, making it a vital resource for those aiming to push boundaries in intelligent information systems.

Journal of Advanced Computational Intelligence and Intelligent Informatics

Navigating the Frontiers of AI and Informatics
Publisher: FUJI TECHNOLOGY PRESS LTDISSN: 1343-0130Frequency: 6 issues/year

The Journal of Advanced Computational Intelligence and Intelligent Informatics, published by FUJI TECHNOLOGY PRESS LTD, stands as a pivotal platform in the fields of Artificial Intelligence, Computer Vision, and Human-Computer Interaction. Established in 1997, this Open Access journal has been providing accessible insights into the latest advancements in computational intelligence and informatics since 2007. With its ISSN 1343-0130 and E-ISSN 1883-8014, this journal invites a diverse readership, including researchers, professionals, and students eager to explore innovative methodologies and applications. Despite its current Q4 ranking in the relevant categories, the journal remains committed to contributing valuable knowledge to the academic community and enhancing the global discourse in computational technologies. With its focus on fostering communication and collaboration among scholars, the journal plays an essential role in driving forward the understanding of intelligent systems and their applications in various domains.

Data Science and Engineering

Transforming research into real-world impact.
Publisher: SPRINGERNATUREISSN: 2364-1185Frequency: 4 issues/year

Data Science and Engineering is a premier open access journal published by SPRINGERNATURE, dedicated to advancing the fields of data science, artificial intelligence, computational mechanics, and information systems. Since its inception in 2016, this journal has rapidly established itself as a leader in the academic community, boasting an impressive Q1 ranking in multiple computer science categories, including Artificial Intelligence, Software, and Information Systems. With a commitment to disseminating high-quality research, it caters to a diverse audience of researchers, professionals, and students eager to explore the intersection of data and technology. The journal's robust global reach, combined with its respected reputation, empowers authors to share their findings widely, facilitating breakthroughs and innovations across the digital landscape. Join the vibrant community of scholars contributing to this integral field of study, and stay informed with the latest research by accessing the journal freely online.

International Journal of Semantic Computing

Empowering Research at the Intersection of Language and Technology
Publisher: WORLD SCIENTIFIC PUBL CO PTE LTDISSN: 1793-351XFrequency: 4 issues/year

The International Journal of Semantic Computing is a premier scholarly publication focused on the intersection of artificial intelligence, computer networks, and linguistics, published by World Scientific Publishing Co PTE Ltd. Since its inception in 2007, this journal has strived to advance the field of semantic computing by promoting innovative research and interdisciplinary collaboration among professionals and academics. With a diverse scope that spans across various categories including Artificial Intelligence, Information Systems, and Linguistics, it boasts commendable rankings, particularly in the fields of Linguistics (77th Percentile) and Linguistics and Language (Rank #259/1167). The journal caters to a broad audience by offering critical insights and cutting-edge studies, thereby contributing significantly to knowledge enhancement in semantic technologies and computational linguistics. Although it does not offer open access options, its rigorous peer-review process ensures the publication of high-quality research that is invaluable for both researchers and students seeking to deepen their understanding in these rapidly evolving areas.