Machine Learning and Knowledge Extraction

Scope & Guideline

Unlocking Knowledge Through Innovative Research

Introduction

Welcome to your portal for understanding Machine Learning and Knowledge Extraction, featuring guidelines for its aims and scope. Our guidelines cover trending and emerging topics, identifying the forefront of research. Additionally, we track declining topics, offering insights into areas experiencing reduced scholarly attention. Key highlights include highly cited topics and recently published papers, curated within these guidelines to assist you in navigating influential academic dialogues.
LanguageEnglish
ISSN-
PublisherMDPI
Support Open AccessNo
Country-
Type-
Converge-
AbbreviationMACH LEARN KNOW EXTR / Mach. Learn. Knowl. Extr.
Frequency4 issues/year
Time To First Decision-
Time To Acceptance-
Acceptance Rate-
Home Page-
AddressST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND

Aims and Scopes

The journal 'Machine Learning and Knowledge Extraction' is a multidisciplinary platform focused on advancing the integration of machine learning techniques across various domains, emphasizing the extraction and interpretation of knowledge from complex data. Its core areas of research reflect innovative methodologies and applications that enhance understanding and decision-making processes.
  1. Machine Learning Techniques and Algorithms:
    The journal publishes research on various machine learning algorithms, including supervised, unsupervised, and reinforcement learning, exploring their theoretical foundations and practical applications.
  2. Knowledge Extraction and Interpretation:
    A significant focus is on methods for extracting meaningful insights and knowledge from large datasets, including explainable AI (XAI) approaches that enhance the interpretability of machine learning models.
  3. Interdisciplinary Applications:
    The journal highlights applications of machine learning in diverse fields such as healthcare, finance, environmental science, and social sciences, showcasing how these techniques can solve real-world problems.
  4. Graph and Network Analysis:
    Research on graph-based machine learning and network analysis is a core area, emphasizing the study of relationships and structures within data, particularly in complex systems.
  5. Data Quality and Preprocessing:
    The journal emphasizes the importance of data preprocessing techniques, including feature selection, dimensionality reduction, and handling imbalanced datasets, which are critical for improving model performance.
  6. Ethics and Fairness in AI:
    There is an increasing emphasis on the ethical implications of AI, focusing on fairness, accountability, and transparency in machine learning systems.
  7. Emerging Technologies:
    Exploration of cutting-edge technologies such as quantum computing, federated learning, and deep learning frameworks is a distinctive aspect of the journal, showcasing innovative approaches to machine learning.
Recent publications in 'Machine Learning and Knowledge Extraction' reflect emerging themes and trends that highlight the dynamic nature of the field. These themes indicate a growing interest in integrating machine learning with other disciplines and addressing contemporary challenges.
  1. Explainable Artificial Intelligence (XAI):
    There is a rising trend in research focused on XAI, which aims to make machine learning models more interpretable. This is increasingly relevant in applications where understanding model decisions is critical, such as healthcare and finance.
  2. Federated Learning and Privacy-Preserving Techniques:
    Emerging interest in federated learning underscores the importance of privacy in machine learning, allowing models to be trained across decentralized data sources without compromising individual data privacy.
  3. Integration of Deep Learning with Traditional Methods:
    Research combining deep learning techniques with traditional statistical methods is trending, as scholars seek to leverage the strengths of both approaches for improved model performance.
  4. Sustainability and Environmental Monitoring:
    An increase in studies addressing environmental issues through machine learning indicates a trend towards applying these technologies in sustainability efforts, such as climate change modeling and resource management.
  5. Human-Centered AI and Ethical Considerations:
    Growing attention to the ethical implications of AI, including fairness, accountability, and user-centered design, reflects a societal demand for responsible AI development.
  6. Multimodal Data Analysis:
    There is an emerging focus on methodologies that analyze and integrate multimodal data (e.g., text, images, and sensor data), enhancing the robustness and applicability of machine learning models.

Declining or Waning

As the field of machine learning evolves, certain themes have seen a decline in publication frequency and focus within the journal. These waning areas may reflect shifting research priorities or the maturation of specific methodologies.
  1. Traditional Statistical Methods:
    There has been a noticeable decrease in the publication of papers focused solely on traditional statistical methods for data analysis, as the field moves towards more complex machine learning approaches.
  2. Low-Complexity Models for Simple Tasks:
    Research centered on low-complexity models for straightforward tasks has diminished, indicating a shift towards leveraging more sophisticated algorithms that can handle complex data.
  3. Basic Machine Learning Tutorials:
    The frequency of publications related to introductory tutorials on basic machine learning concepts has declined, as the audience for the journal increasingly seeks advanced and specialized content.
  4. Single-Domain Focus Studies:
    Papers focusing exclusively on single-domain applications with minimal interdisciplinary insights have become less common, as researchers now emphasize cross-domain applications and collaborative studies.
  5. Non-Explainable AI Approaches:
    There is a waning interest in non-explainable AI methodologies, as the demand for transparency and interpretability in machine learning models becomes more pronounced.

Similar Journals

ACM Transactions on Knowledge Discovery from Data

Shaping Tomorrow’s Knowledge through Data Insights
Publisher: ASSOC COMPUTING MACHINERYISSN: 1556-4681Frequency: 4 issues/year

ACM Transactions on Knowledge Discovery from Data (TKDD), published by the Association for Computing Machinery, is a prestigious journal at the forefront of the interdisciplinary realm of data mining and knowledge discovery. With an impressive Q1 ranking in Computer Science and a Scopus rank of #43 out of 232, this journal stands out as a top-tier resource for innovative research that addresses complex challenges in data science. Covering impactful studies from 2007 to 2024, TKDD presents cutting-edge algorithms, methodologies, and applications that shape the future of knowledge extraction from vast datasets. While not an open-access journal, it provides a platform for researchers, professionals, and students to disseminate their findings and engage with the latest advancements in this rapidly evolving field. By fostering collaboration and knowledge sharing, TKDD plays a vital role in advancing the understanding and application of data analysis techniques, making it an essential read for anyone involved in the pursuit of knowledge from data.

Science China-Information Sciences

Connecting Researchers for Transformative Insights.
Publisher: SCIENCE PRESSISSN: 1674-733XFrequency: 1 issue/year

Science China-Information Sciences is a prestigious academic journal published by SCIENCE PRESS, dedicated to advancing knowledge in the field of information sciences and computer science. Established in China, the journal has gained a remarkable reputation, with a 2023 category quartile ranking of Q1 in Computer Science (miscellaneous) and an impressive Scopus rank of #16 out of 232 in General Computer Science, positioning it within the 93rd percentile. The journal embraces a broad spectrum of topics, from theoretical frameworks to practical applications, providing a platform for researchers, professionals, and students to disseminate their findings and engage with the latest advancements in the field. With open access options available, Science China-Information Sciences ensures that innovative research is accessible to a global audience, fostering collaboration and interdisciplinary dialogue. The journal not only reflects the evolving landscape of information sciences but also plays a pivotal role in shaping future research directions.

International Journal of Semantic Computing

Empowering Research at the Intersection of Language and Technology
Publisher: WORLD SCIENTIFIC PUBL CO PTE LTDISSN: 1793-351XFrequency: 4 issues/year

The International Journal of Semantic Computing is a premier scholarly publication focused on the intersection of artificial intelligence, computer networks, and linguistics, published by World Scientific Publishing Co PTE Ltd. Since its inception in 2007, this journal has strived to advance the field of semantic computing by promoting innovative research and interdisciplinary collaboration among professionals and academics. With a diverse scope that spans across various categories including Artificial Intelligence, Information Systems, and Linguistics, it boasts commendable rankings, particularly in the fields of Linguistics (77th Percentile) and Linguistics and Language (Rank #259/1167). The journal caters to a broad audience by offering critical insights and cutting-edge studies, thereby contributing significantly to knowledge enhancement in semantic technologies and computational linguistics. Although it does not offer open access options, its rigorous peer-review process ensures the publication of high-quality research that is invaluable for both researchers and students seeking to deepen their understanding in these rapidly evolving areas.

Progress in Artificial Intelligence

Driving Breakthroughs in Intelligent Systems
Publisher: SPRINGERNATUREISSN: 2192-6352Frequency: 4 issues/year

Progress in Artificial Intelligence is a leading journal published by SpringerNature, dedicated to advancing knowledge and research in the field of artificial intelligence. With a strong emphasis on the latest developments from 2012 through 2024, this journal enjoys a prominent position, holding a Q2 ranking in the prestigious Artificial Intelligence category for 2023, as well as achieving an impressive ranking of 64 out of 350 in the Computer Science - Artificial Intelligence category on Scopus, placing it in the 81st percentile. Progress in Artificial Intelligence serves as an essential platform for researchers, professionals, and students seeking to share innovative algorithms, applications, and theoretical advancements. Although it operates under a subscription model, its commitment to disseminating high-quality research and fostering collaboration in the AI community significantly contributes to the ongoing evolution of this exciting discipline.

Big Data Research

Catalyzing breakthroughs in analytics and management.
Publisher: ELSEVIERISSN: 2214-5796Frequency: 4 issues/year

Big Data Research, published by Elsevier, is a leading academic journal dedicated to the exploration and advancement of Big Data methodologies and technologies. With an ISSN of 2214-5796, and a commendable impact reflected in its Scopus rankings—ranking Q2 in Computer Science Applications and Q1 in Information Systems—this journal offers a prominent platform for researchers and practitioners to share innovative findings in the realm of data science, analytics, and management. Since its inception in 2014, Big Data Research has fostered a multidisciplinary approach, addressing cutting-edge topics crucial for both academic inquiry and real-world applications. The journal's objectives include advancing the understanding of data-intensive systems, promoting essential methodologies for big data analytics, and enhancing data-driven decision-making processes across various industries. As an open access journal, Big Data Research is committed to disseminating knowledge widely, allowing researchers, professionals, and students to stay at the forefront of developments in this fast-evolving field. Its influence in the academic community is further underscored by a strong commitment to quality and relevance, making it an essential resource for anyone interested in the transformative power of big data.

NEURAL COMPUTING & APPLICATIONS

Transforming Ideas into Impactful Applications
Publisher: SPRINGER LONDON LTDISSN: 0941-0643Frequency: 12 issues/year

NEURAL COMPUTING & APPLICATIONS is a premier journal dedicated to the burgeoning fields of Artificial Intelligence and Software Engineering, published by Springer London Ltd. Established in 1993, the journal serves as a pivotal platform for disseminating cutting-edge research and innovative applications in neural computing, covering a broad range of topics from algorithm development to real-world applications. With its impressive categorization in the 2023 Journal Quartiles—ranging Q2 in Artificial Intelligence and Q1 in Software—it stands out in its discipline, ranking 42nd out of 407 in Computer Science Software and 50th out of 350 in Computer Science Artificial Intelligence, reflecting its significant impact in the academic community. Although not an open access journal, it provides vital access to significant findings and methodologies that drive advancements in technology. Researchers, professionals, and students looking to stay abreast of the most relevant and impactful developments in these fields will find NEURAL COMPUTING & APPLICATIONS an indispensable resource.

JOURNAL OF INTELLIGENT INFORMATION SYSTEMS

Exploring Innovations in Information Technology
Publisher: SPRINGERISSN: 0925-9902Frequency: 6 issues/year

The Journal of Intelligent Information Systems, published by Springer since 1992, is a premier academic journal that offers a multidisciplinary platform in the fields of Artificial Intelligence, Computer Networks and Communications, Hardware and Architecture, Information Systems, and Software. With an impressive impact reflected in its 2023 Q2 category rankings across multiple domains and a commendable standing in the Scopus Rankings—ranking #84 in Computer Networks and Communications and #101 in Artificial Intelligence—the journal is recognized for its contribution to advancing knowledge and innovation. Although it is not an open-access journal, its accessibility through institutional subscriptions ensures that a wide range of researchers, professionals, and students can engage with high-quality, peer-reviewed research that addresses the latest advancements and trends in intelligent systems. For over three decades, this journal has effectively bridged gaps between academia and industry, making it a vital resource for those aiming to push boundaries in intelligent information systems.

Quantum Machine Intelligence

Pioneering research at the nexus of quantum mechanics and AI.
Publisher: SPRINGERNATUREISSN: 2524-4906Frequency: 1 issue/year

Quantum Machine Intelligence is a leading academic journal published by Springer Nature, focusing on the rapidly evolving intersection of quantum computing and artificial intelligence. With an impressive impact factor reflected in its prestigious ranking in various categories—Q1 in Applied Mathematics, Computational Theory and Mathematics, and Theoretical Computer Science, alongside Q2 in Artificial Intelligence and Software—this journal serves as a vital platform for disseminating innovative research from 2019 to 2024. Researchers, professionals, and students are encouraged to engage with the journal’s content, which features high-quality peer-reviewed articles that explore theoretical foundations and practical applications of quantum technologies in machine intelligence. Although the journal operates under traditional subscription models, it is committed to advancing open academic discourse and accessibility in the digital age. With Scopus rankings that place it among the top echelons of its fields, the journal is an essential resource for anyone interested in the transformative potential of quantum algorithms and AI.

NEW GENERATION COMPUTING

Pioneering Research in Hardware and Software Engineering
Publisher: SPRINGERISSN: 0288-3635Frequency: 4 issues/year

NEW GENERATION COMPUTING is a prominent academic journal published by SPRINGER, specializing in the dynamic fields of Computer Networks, Hardware and Architecture, Software Engineering, and Theoretical Computer Science. With a commitment to disseminating high-quality research since its inception in 1983 and extending its coverage to 2024, this journal occupies a vital role in advancing knowledge and innovation within these critical domains. Holding prestigious Q2 rankings in Computer Networks and Communications, Hardware and Architecture, and Software, as well as a Q3 ranking in Theoretical Computer Science for 2023, NEW GENERATION COMPUTING attracts significant contributions from scholars and professionals around the globe. Researchers will find its rigorous peer-review process ensures the publication of impactful studies, while students gain access to cutting-edge research that shapes contemporary computing practices. Though it does not offer open access, the journal remains an invaluable resource in the academic community, fostering collaboration and dialogue among experts aiming to push the boundaries of technology.

IEEE Computational Intelligence Magazine

Illuminating the Path of Computational Intelligence
Publisher: IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INCISSN: 1556-603XFrequency: 4 issues/year

IEEE Computational Intelligence Magazine, published by the esteemed IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, is an essential resource for researchers and professionals in the fields of Artificial Intelligence and Theoretical Computer Science. With a robust Q1 ranking in both categories for 2023, this magazine stands out as a leader in disseminating cutting-edge research and innovative applications within computational intelligence. As an invaluable conduit for knowledge, it covers a diverse range of topics, including but not limited to machine learning, neural networks, and data mining. The magazine is particularly recognized for its interdisciplinary approach, bridging gaps between theory and application while contributing to advancements in technology and society. Although it does not offer open access, the insights provided are critical for staying at the forefront of this rapidly evolving discipline. Join a community of like-minded scholars and practitioners by exploring the latest findings and trends published from 2006 to 2024, operating from its headquarters at 445 Hoes Lane, Piscataway, NJ, United States.