JOURNAL OF ALGEBRAIC COMBINATORICS
Scope & Guideline
Fostering scholarly dialogue in the realm of algebraic combinatorics.
Introduction
Aims and Scopes
- Algebraic Structures:
Investigates the algebraic properties and structures arising from combinatorial objects, including groups, rings, and algebras. - Graph Theory:
Explores properties of graphs, including their automorphism groups, spectral properties, and edge ideals, often applying combinatorial techniques to understand their structure. - Combinatorial Designs and Codes:
Focuses on the construction and analysis of combinatorial designs, error-correcting codes, and their applications in various mathematical and applied contexts. - Geometric Combinatorics:
Studies combinatorial aspects of geometric objects, including polytopes, arrangements, and their algebraic invariants. - Representation Theory:
Examines the representations of algebraic structures through combinatorial lenses, including the study of symmetric groups and their actions. - Matroid Theory:
Investigates matroids and their combinatorial properties, often linking them to algebraic concepts and applications.
Trending and Emerging
- Algebraic Combinatorial Structures:
There is a growing interest in the interplay between algebraic structures and combinatorial configurations, including the study of algebraic invariants of combinatorial objects. - Spectral Graph Theory:
Research on spectral properties of graphs, including eigenvalues and their applications to combinatorial problems, has seen a significant uptick, highlighting its relevance in modern combinatorial research. - Computational Techniques in Combinatorics:
The integration of computational methods and algorithms in combinatorial studies is on the rise, facilitating deeper insights and broader applications of combinatorial theories. - Higher Dimensional Combinatorial Objects:
Emerging research focuses on properties and applications of higher-dimensional structures, such as polytopes and simplicial complexes, reflecting a trend toward more complex combinatorial frameworks. - Applications of Algebraic Techniques to Combinatorial Problems:
There is an increasing application of algebraic techniques, such as homological algebra and representation theory, to tackle combinatorial problems, indicating a fusion of these fields.
Declining or Waning
- Classical Design Theory:
Research related to classical designs, such as block designs and finite geometries, has seen a decrease, possibly due to the rise of computational methods and algebraic approaches. - Elementary Combinatorial Techniques:
Traditional combinatorial techniques, which were once predominant, appear less frequently, as the field increasingly leans toward algebraic and geometric methods. - Basic Graph Properties:
Studies focused solely on basic properties of graphs, such as connectivity and planarity, are becoming less prevalent in favor of more complex algebraic and combinatorial interactions.
Similar Journals
JOURNAL OF ALGEBRA
Elevating Understanding in the World of AlgebraThe JOURNAL OF ALGEBRA, published by Academic Press Inc. Elsevier Science, is a premier scholarly outlet dedicated to the field of algebra and number theory. With its impressive Q1 ranking in the 2023 category of Algebra and Number Theory and a solid Scopus rank of #46 out of 119, it stands as a crucial resource for researchers and professionals seeking to deepen their understanding of advanced algebraic concepts. Operating since 1964 and continuing through 2025, the journal boasts a rich history of publishing influential research that drives the discipline forward. While the journal does not currently offer open access options, it remains committed to providing high-quality peer-reviewed content to the academic community. Its comprehensive archive and cutting-edge research articles serve as essential tools for students, researchers, and practitioners aiming to stay at the forefront of algebraic studies.
MONATSHEFTE FUR MATHEMATIK
Illuminating the Path of Mathematical AdvancementMONATSHEFTE FUR MATHEMATIK, published by Springer Wien, stands as a pivotal academic journal in the field of mathematics, with its esteemed history tracing back to 1890. With an ISSN of 0026-9255 and an E-ISSN of 1436-5081, this journal encompasses a rich array of topics and contributions within the realm of mathematical research, catering to both historical and contemporary discourse. Although not an open access journal, it maintains a Q2 rank in the mathematical category as per the 2023 assessment, illustrating its significant impact and relevance, as evidenced by its Scopus ranking of #160/399, placing it at the 59th percentile within the general mathematics category. Published in Austria, MONATSHEFTE FUR MATHEMATIK provides a platform for researchers, professionals, and students to explore innovative mathematical theories and applications through its various converged years of contributions, from 1890 to 2024. This journal is an essential resource for anyone invested in advancing their understanding of mathematical concepts and fostering scholarly dialogue in the field.
Pure and Applied Mathematics Quarterly
Connecting Mathematicians Through Quality ResearchPure and Applied Mathematics Quarterly is a prestigious journal published by INT PRESS BOSTON, INC, focusing on the diverse and evolving field of mathematics. Since its inception in 2007, this journal has grown significantly, currently holding a Q1 ranking in the Mathematics (Miscellaneous) category for 2023, positioning it among the leading publications in the discipline. With a commitment to publishing high-quality research, Pure and Applied Mathematics Quarterly fosters innovation and dialogue within the mathematical community by providing a platform for theoretical advancements and practical applications. The journal remains accessible to researchers and professionals through its ISSN 1558-8599 and E-ISSN 1558-8602, although it does not currently offer open access. As a vital resource for mathematicians, educators, and students, this journal endeavors to expand the frontiers of mathematical knowledge and contribute to the academic dialogue surrounding this fundamental science.
Acta Universitatis Sapientiae-Mathematica
Connecting researchers to the forefront of mathematical innovation.Acta Universitatis Sapientiae-Mathematica is a dynamic and open-access academic journal published by SCIENDO, dedicated to advancing research in the field of mathematics. With its roots grounded in Germany, the journal has made significant strides in promoting scholarly contributions since it became open access in 2013, enhancing accessibility for researchers, professionals, and students alike. Spanning a broad spectrum of mathematical disciplines, including general mathematics, the journal engages with contemporary challenges and offers a platform to explore innovative approaches. Although currently positioned in the Q4 quartile for 2023 within the miscellaneous mathematics category and holding a Scopus rank of #290 out of 399, the journal is committed to fostering intellectual discourse and enhancing the overall quality of mathematics research. The convergence of research presented since 2014 showcases a journey toward improvement and expanding its influence in the mathematical community. Contribute to the vibrant dialogue in mathematics by exploring the latest findings in Acta Universitatis Sapientiae-Mathematica as it continues to evolve in the academic landscape.
Annals of Combinatorics
Exploring the Frontiers of Discrete MathematicsAnnals of Combinatorics, published by Springer Basel AG, serves as a premier platform for innovation and research in the field of discrete mathematics and combinatorics. With an ISSN of 0218-0006 and an E-ISSN of 0219-3094, the journal captures the ongoing developments and breakthroughs that characterize this dynamic discipline, which plays a crucial role in various applications such as computer science, optimization, and statistical mechanics. The journal has been recognized as part of the Q2 category in the 2023 rankings for discrete mathematics and combinatorics, reflecting its significant contribution to the academic community. Researchers and educators alike benefit from its insightful articles that not only cover theoretical advancements but also practical implications. With convergence years spanning from 2005 to 2024, the Annals of Combinatorics continues to be an essential resource for anyone looking to deepen their understanding and explore new frontiers in combinatorial research.
JOURNAL OF COMBINATORIAL THEORY SERIES B
Advancing the Frontiers of Combinatorial KnowledgeJOURNAL OF COMBINATORIAL THEORY SERIES B, published by Academic Press Inc., Elsevier Science, is an esteemed journal within the discipline of combinatorial theory, discrete mathematics, and theoretical computer science. With a rich history since its inception in 1971 and ongoing publication through 2025, this journal has established itself as a pillar in its field, currently holding Q1 category rankings in multiple areas including Computational Theory and Mathematics, Discrete Mathematics and Combinatorics, and Theoretical Computer Science. The journal features cutting-edge research and developments, attracting contributions from both established professionals and emerging scholars. Despite the absence of an open access option, the journal's strong impact reflected in its Scopus ranks—such as being number 16 out of 92 in Discrete Mathematics and Combinatorics (83rd percentile)—signifies its influential role in advancing knowledge and innovation. Researchers seeking to share impactful findings and connect with a vibrant academic community will find the JOURNAL OF COMBINATORIAL THEORY SERIES B an essential resource.
ELECTRONIC JOURNAL OF COMBINATORICS
Pioneering Research in Combinatorial TechniquesELECTRONIC JOURNAL OF COMBINATORICS, an esteemed publication in the field of combinatorial mathematics, has been a significant platform for innovative research since its inception in 1996. Published by the ELECTRONIC JOURNAL OF COMBINATORICS, this open-access journal has made its complete repository freely available since 2014, encouraging broad international collaboration and dissemination of knowledge. The journal maintains a robust reputation, boasting various category quartiles including Q1 rankings in Applied Mathematics and Discrete Mathematics, highlighting its importance in advancing research and applications in these critical fields. With a clear commitment to showcasing high-impact work and contributing to the ongoing discourse in computational theories, the journal appeals to researchers, professionals, and students alike. Scholars can access a wide array of rigorous articles that explore the latest trends and developments in combinatorial techniques, geometry, and topology, making this journal an essential resource for anyone vested in mathematical sciences. For more information, please refer to their office based at the University of Delaware, Department of Mathematical Sciences.
ALGEBRAS AND REPRESENTATION THEORY
Fostering Collaboration in Algebra and Representation ResearchALGEBRAS AND REPRESENTATION THEORY, published by SPRINGER, is a premier journal that focuses on the cutting-edge developments in the field of algebra and representation theory. With an ISSN of 1386-923X and an E-ISSN of 1572-9079, this journal has fostered a robust platform for both established and emerging researchers since its inception in 1998. As a Q1 journal in the Mathematics miscellaneous category for 2023, it stands out for its rigorous peer-review process and commitment to academic excellence. Although it is not an open-access journal, its broad scope includes significant theoretical advancements and applications that resonate across various mathematical disciplines. Located at VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS, ALGEBRAS AND REPRESENTATION THEORY continues to contribute meaningfully to the scientific community by providing researchers with essential insights and fostering collaboration in the increasingly complex landscape of mathematics. Researchers, professionals, and students are encouraged to engage with the latest publications, as the journal plays a critical role in shaping contemporary discussions and innovations in the study of algebraic structures.
Transactions on Combinatorics
Empowering Researchers with Cutting-edge FindingsTransactions on Combinatorics is an esteemed academic journal dedicated to advancing the field of combinatorial mathematics. Published by UNIV ISFAHAN, VICE PRESIDENT RESEARCH & TECHNOLOGY, this journal has been an Open Access platform since 2012, ensuring that innovative research is freely available to scholars across the globe. With an ISSN of 2251-8657 and an E-ISSN of 2251-8665, it fosters a community for researchers to disseminate their findings within the realms of Computational Theory and Discrete Mathematics. The journal has been classified in the Q4 category for both its major fields in 2023 and holds notable Scopus rankings that reflect its growing influence in the academic community, despite currently being in the lower quartiles. The journal covers a diverse range of topics from theoretical frameworks to practical applications, making it a valuable resource for researchers, professionals, and students who are passionate about combinatorics. Addressed from DEPT PRINTING & PUBLISHING MAGAZINES, HEZAR-JARIB AVE, ISAFAHAN 81746-73441, IRAN, it stands as a beacon for collaborative research and knowledge sharing in this essential field.
Algebra And Discrete Mathematics
Bridging Classical and Contemporary Mathematical TheoriesAlgebra And Discrete Mathematics, published by LUHANSK TARAS SHEVCHENKO NATIONAL UNIVERSITY, is a pivotal academic journal dedicated to exploring the realms of algebra and discrete mathematics. Since its inception in 2012, this journal has contributed significantly to the mathematical community, catering to researchers, professionals, and students interested in advancing their understanding of both classical and contemporary mathematical theories. With categories placed in Q4 in Algebra and Number Theory and Q3 in Discrete Mathematics and Combinatorics, and rankings that place it among various domains with percentiles reflecting its niche status, the journal offers a platform for innovative and high-quality research. While the journal is currently not open access, it maintains a robust academic presence, and its continuous publication until 2024 ensures a steady stream of scholarly discourse. Researchers and academics keen on disseminating their findings or keeping abreast of the latest developments in these mathematical fields will find valuable insights and diverse methodologies within its pages.