STATISTICS AND COMPUTING

Scope & Guideline

Fostering interdisciplinary collaboration in statistics and computing.

Introduction

Welcome to your portal for understanding STATISTICS AND COMPUTING, featuring guidelines for its aims and scope. Our guidelines cover trending and emerging topics, identifying the forefront of research. Additionally, we track declining topics, offering insights into areas experiencing reduced scholarly attention. Key highlights include highly cited topics and recently published papers, curated within these guidelines to assist you in navigating influential academic dialogues.
LanguageEnglish
ISSN0960-3174
PublisherSPRINGER
Support Open AccessNo
CountryNetherlands
TypeJournal
Convergefrom 1991 to 2024
AbbreviationSTAT COMPUT / Stat. Comput.
Frequency1 issue/year
Time To First Decision-
Time To Acceptance-
Acceptance Rate-
Home Page-
AddressVAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS

Aims and Scopes

The journal 'Statistics and Computing' focuses on the intersection of statistics and computational methods, aiming to advance statistical theory, methodologies, and their applications through innovative computational techniques.
  1. Statistical Theory and Methodology:
    The journal emphasizes the development of new statistical theories and methodologies, with a strong focus on applied statistics across various fields.
  2. Computational Techniques and Algorithms:
    It explores computational methods that enhance the efficiency and effectiveness of statistical analyses, including advancements in algorithms for statistical computing.
  3. Machine Learning and Data Science Applications:
    The journal includes research on machine learning methodologies and their applications in data science, showcasing how statistical techniques can be employed in predictive modeling and data analysis.
  4. Bayesian Inference and Modeling:
    There is a significant focus on Bayesian methods, including hierarchical models, mixture models, and novel sampling strategies, reflecting the growing importance of Bayesian approaches in statistical analysis.
  5. High-Dimensional Data Analysis:
    Research addressing the challenges of high-dimensional data, including variable selection, dimensionality reduction, and robust estimation techniques, is a key area of interest.
  6. Statistical Applications in Real-World Problems:
    The journal highlights statistical applications in various domains, such as environmental science, healthcare, finance, and social sciences, demonstrating the practical impact of statistical research.
Recent publications in 'Statistics and Computing' reveal several emerging themes that reflect current trends and innovations in the field.
  1. Advanced Bayesian Methods:
    There is a notable increase in research focused on advanced Bayesian techniques, including variational inference, Bayesian hierarchical models, and robust Bayesian methods, indicating a growing interest in these powerful statistical tools.
  2. Machine Learning Integration:
    The integration of machine learning with statistical methodologies is gaining momentum, particularly in the development of hybrid models that leverage the strengths of both fields for improved predictive performance.
  3. High-Dimensional and Big Data Analytics:
    Research addressing the challenges of high-dimensional data and big data analytics is on the rise, with a focus on scalable statistical methods and computational efficiency, highlighting the need for robust techniques in modern data analysis.
  4. Robust and Resilient Statistical Methods:
    There is an increasing emphasis on developing robust statistical methods that can withstand model misspecification and data irregularities, reflecting a trend towards more resilient analytical frameworks.
  5. Statistical Learning with Complex Data Structures:
    Emerging themes include the analysis of complex data structures, such as functional data, network data, and time series, showcasing innovative approaches to tackle intricate statistical challenges.

Declining or Waning

While 'Statistics and Computing' continues to thrive in many areas, certain themes have shown signs of declining interest or frequency in published works.
  1. Traditional Frequentist Methods:
    There appears to be a waning focus on classical frequentist statistical methods, with a shift towards Bayesian methodologies and machine learning techniques, reflecting the evolving landscape of statistical practice.
  2. Basic Descriptive Statistics:
    Papers centered on basic descriptive statistics and elementary statistical techniques are becoming less common, as the field advances towards more complex and computationally intensive analyses.
  3. Single-Method Approaches:
    The journal is moving away from studies that rely solely on a single statistical method, favoring research that integrates multiple methodologies or computational approaches for improved analysis.

Similar Journals

COMPUTATIONAL STATISTICS & DATA ANALYSIS

Bridging Theory and Practice in Computational Mathematics
Publisher: ELSEVIERISSN: 0167-9473Frequency: 12 issues/year

COMPUTATIONAL STATISTICS & DATA ANALYSIS, published by Elsevier, is a leading academic journal that has made significant contributions to the fields of Applied Mathematics, Computational Mathematics, Computational Theory and Mathematics, and Statistics and Probability. With an impressive ranking of Q1 in multiple categories, this journal stands at the forefront of scholarly research and innovation. Leveraging its digital accessibility through E-ISSN 1872-7352, the journal facilitates the dissemination of high-quality research findings and methodologies essential for advancing statistical techniques and data analysis applications. Operating from its base in Amsterdam, Netherlands, the journal features rigorous peer-reviewed articles that cater to a diverse readership including researchers, professionals, and students. As a vital resource for cutting-edge developments from 1983 to its ongoing publication in 2025, COMPUTATIONAL STATISTICS & DATA ANALYSIS continues to foster academic discourse and propel the field forward, ensuring that emerging trends and established theories are effectively communicated to the scientific community.

Communications in Mathematics and Statistics

Elevating the Discourse in Mathematics and Statistics
Publisher: SPRINGER HEIDELBERGISSN: 2194-6701Frequency: 4 issues/year

Communications in Mathematics and Statistics, published by Springer Heidelberg, is a prominent journal dedicated to advancing research in the fields of applied mathematics, computational mathematics, and statistics. With an ISSN of 2194-6701 and an E-ISSN of 2194-671X, the journal has established itself as a vital platform for interdisciplinary scholarly communication since its inception in 2013. The journal falls within the third quartile in various rankings including applied mathematics, computational mathematics, and statistics and probability, indicating its solid position in the global research landscape. With a focus on innovative methodologies and practical applications, Communications in Mathematics and Statistics aims to bridge the gap between theoretical research and practical implementation. Researchers, professionals, and students alike will find valuable insights and cutting-edge studies that contribute to the evolution of mathematical sciences. The journal is based in Germany, with a commitment to fostering international collaboration and accessibility in mathematical research.

Foundations of Data Science

Exploring the Foundations of Tomorrow's Technologies
Publisher: AMER INST MATHEMATICAL SCIENCES-AIMSISSN: Frequency: 4 issues/year

Foundations of Data Science, published by the American Institute of Mathematical Sciences (AIMS), is a pioneering journal dedicated to advancing knowledge within the ever-evolving fields of data science, mathematics, and computational theory. With an impact factor reflecting its quality and relevance, this journal has established itself as a crucial resource for researchers and professionals alike, achieving remarkable rankings in the Scopus metrics across various mathematical categories, including 35th in Analysis and 70th in Statistics and Probability. The journal, which has been continuously growing in significance since its inception in 2019, focuses on both foundational theories and applied methodologies, providing open access to cutting-edge research from 2024 onward. Its commitment to fostering interdisciplinary collaboration ensures that it remains at the forefront of the data science realm, making it an essential platform for students, scholars, and practitioners aiming to deepen their understanding and contribute to the scientific community.

Statistical Methods and Applications

Connecting theory and practice for statistical excellence.
Publisher: SPRINGER HEIDELBERGISSN: 1618-2510Frequency: 5 issues/year

Statistical Methods and Applications is a leading journal published by SPRINGER HEIDELBERG, dedicated to advancing the field of statistics and its applications in various domains. With an ISSN of 1618-2510 and an E-ISSN of 1613-981X, this journal serves as a vital resource for researchers and professionals looking to explore innovative statistical methodologies and their practical implications. The journal has demonstrated a notable influence within the scholarly community, ranked Q3 in both Statistics and Probability and Statistics, Probability and Uncertainty categories as of 2023. Covering a scope that spans from its inception in 1996 to the present, Statistical Methods and Applications provides robust platforms for empirical studies, theoretical advancements, and applied statistics. Although currently not open access, the journal is well-regarded for its rigorous peer-review process and commitment to high-quality research, making it an essential read for anyone dedicated to enhancing their statistical knowledge and expertise.

ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS

Advancing the Frontiers of Statistical Knowledge
Publisher: SPRINGER HEIDELBERGISSN: 0020-3157Frequency: 5 issues/year

ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, published by SPRINGER HEIDELBERG, is a prestigious academic journal that has played a pivotal role in the field of statistical mathematics since its inception in 1949. With a focus on advancing research in statistics and probability, this journal is ranked in the Q2 quartile for 2023, indicating its significance and impact within the academic community. Researchers and professionals engaged in statistical theory and methodology will find the journal's comprehensive coverage of contemporary issues essential for furthering their work and understanding of the discipline. The journal is accessible in print and digital formats, facilitating wide dissemination of knowledge among its readership. With a history of rigorous peer review and a commitment to high-quality research, the ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS continues to be a vital resource for academics and practitioners alike.

Statistics and Its Interface

Connecting Theory and Practice in Statistics
Publisher: INT PRESS BOSTON, INCISSN: 1938-7989Frequency: 4 issues/year

Statistics and Its Interface, issn 1938-7989, published by INT PRESS BOSTON, INC, is a vital academic journal dedicated to bridging the critical intersection of statistics, applied mathematics, and interdisciplinary research. With its inaugural publication in 2011, this journal has continually aimed to provide a platform for innovative statistical methods and their application across various fields, offering valuable insights for researchers and practitioners alike. While the journal currently operates without an open access model, it maintains an essential position within the scholarly community, evidenced by its 2023 rankings in the third quartile for Applied Mathematics and the fourth quartile for Statistics and Probability. Furthermore, it holds a respectable position in Scopus rankings, reflecting its commitment to quality over quantity. By publishing cutting-edge research, Statistics and Its Interface serves as a critical resource for advancing statistical knowledge and cultivating a deeper understanding of its applications in real-world contexts.

Stat

Navigating the complexities of statistics with expert insights.
Publisher: WILEYISSN: 2049-1573Frequency: 1 issue/year

Stat is a respected academic journal published by WILEY, focusing on the vital fields of Statistics and Probability. Established in 2012 and converging through to 2024, this journal offers critical insights and advancements in statistical methodologies and applications. While it operates under traditional access options, researchers and practitioners can benefit from its rigorous peer-reviewed content, which serves to stimulate innovation and collaboration in statistics. In the 2023 categorizations, Stat has been recognized in the Q3 quartile in both Statistics and Probability and Statistics, Probability and Uncertainty, reflecting its growing influence and relevance in the field. Positioned within a competitive landscape, with Scopus ranks highlighting its challenges and opportunities, Stat is an essential resource for academics, professionals, and students seeking to deepen their understanding and application of statistical techniques. As the journal continues to evolve, it remains committed to fostering a community of inquiry and practice in statistics.

Econometrics and Statistics

Transforming data into impactful insights for diverse fields.
Publisher: ELSEVIERISSN: 2468-0389Frequency: 4 issues/year

Econometrics and Statistics is a premier journal published by Elsevier, dedicated to advancing the fields of Econometrics and Statistics. Since its inception in 2017, this journal has provided a platform for cutting-edge research, bridging theoretical foundations with practical applications to inform data-driven decision-making. With an impressive impact factor and positioned in the Q2 category across Economics, Econometrics, and Statistics in 2023, it ranks among the top-tier journals in its field, ensuring that the published works are recognized for their quality and relevance. The journal encompasses a broad scope that includes statistical methodologies, econometric analysis, and their interconnectedness, making it valuable for a diverse audience of researchers, professionals, and students. Although it operates under a traditional access model, ongoing efforts are being made to explore open-access publishing options to enhance the dissemination of knowledge. The journal's commitment to rigor and innovation solidifies its role in shaping the future of quantitative analysis.

STATISTICA NEERLANDICA

Pioneering insights in the realm of statistics and probability.
Publisher: WILEYISSN: 0039-0402Frequency: 4 issues/year

STATISTICA NEERLANDICA is a prestigious peer-reviewed journal published by Wiley, focusing on the fields of statistics and probability. Established in 1946 and addressing key issues in statistical theory and its applications, the journal has significantly contributed to the development of modern statistical practices. With an impressive Q2 categorization in both Statistics and Probability, as well as Statistics, Probability, and Uncertainty, STATISTICA NEERLANDICA stands out within its field, ranking in the 62nd percentile among its peers in mathematics, specifically in statistics and probability. Researchers, professionals, and students can benefit from its rigorous scholarship and innovative methodologies, aiding in the advancement of statistical science. Although the journal does not operate under an open access model, it maintains a commitment to disseminating high-quality research, making it a vital resource for those engaged in statistical inquiry.

STATISTICAL PAPERS

Elevating Research in Statistics and Probability
Publisher: SPRINGERISSN: 0932-5026Frequency: 4 issues/year

STATISTICAL PAPERS, published by Springer, is a leading journal in the field of Statistics and Probability that has been contributing to the academic community since 1988. With an impressive track record spanning over three decades, this journal falls within the prestigious Q2 quartile in both the Statistics and Probability and Statistics, Probability and Uncertainty categories, signifying its high-quality research output. It currently ranks #92 out of 278 in the Mathematics - Statistics and Probability category and #61 out of 168 in Decision Sciences - Statistics, Probability and Uncertainty, placing it in the 67th and 63rd percentiles respectively. Although the journal is not open access, it offers a vital platform for researchers, professionals, and students seeking to disseminate their findings and stay abreast of the latest advancements in statistical methods and applications. With its commitment to the highest standards of scholarship, STATISTICAL PAPERS plays a crucial role in shaping contemporary statistical discourse and fostering innovation within the field.