Statistical Applications in Genetics and Molecular Biology

Scope & Guideline

Transforming Data into Biological Breakthroughs

Introduction

Explore the comprehensive scope of Statistical Applications in Genetics and Molecular Biology through our detailed guidelines, including its aims and scope. Stay updated with trending and emerging topics, and delve into declining areas to understand shifts in academic interest. Our guidelines also showcase highly cited topics, featuring influential research making a significant impact. Additionally, discover the latest published papers and those with high citation counts, offering a snapshot of current scholarly conversations. Use these guidelines to explore Statistical Applications in Genetics and Molecular Biology in depth and align your research initiatives with current academic trends.
LanguageEnglish
ISSN2194-6302
PublisherWALTER DE GRUYTER GMBH
Support Open AccessNo
Country-
Type-
Converge-
AbbreviationSTAT APPL GENET MOL / Stat. Appl. Genet. Mol. Biol.
Frequency-
Time To First Decision-
Time To Acceptance-
Acceptance Rate-
Home Page-
AddressGENTHINER STRASSE 13, D-10785 BERLIN, GERMANY

Aims and Scopes

The journal 'Statistical Applications in Genetics and Molecular Biology' focuses on the development and application of statistical methodologies in the fields of genetics and molecular biology. Its core areas encompass a wide range of statistical techniques tailored to analyze high-dimensional genomic data, with an emphasis on innovative modeling approaches and integrative analysis of biological data.
  1. Statistical Modeling in Genomics:
    The journal emphasizes the development of advanced statistical models to analyze genomic data, including methods for handling high-dimensional datasets, such as those arising from RNA-seq and microarray studies.
  2. Integrative Analysis of Omics Data:
    A core focus is placed on integrative approaches that combine various types of omics data (genomics, transcriptomics, proteomics, etc.) for comprehensive biological insights, including studies on cancer subtypes and disease mechanisms.
  3. Bayesian Methods for Genetic Studies:
    There is a significant emphasis on Bayesian statistical methods, particularly in the context of genetic association studies, population stratification, and mediation analysis, allowing for more robust inference in complex genetic datasets.
  4. Machine Learning Applications in Genomics:
    The journal explores the intersection of machine learning and genomics, highlighting innovative applications such as deep learning for protein function prediction and feature selection methods for gene expression analysis.
  5. Methodological Innovations for High-Throughput Data:
    Methodological contributions that address the unique challenges posed by high-throughput data, including batch effect correction, power estimation, and robust statistical testing, are frequently featured.
The journal has increasingly focused on emerging themes that reflect the evolving landscape of genetic research and statistical applications. These trends highlight the journal's commitment to addressing contemporary challenges in the field.
  1. Deep Learning in Protein Function Prediction:
    Recent publications show a significant trend towards the application of deep learning techniques, such as CNN and BiGRU models, to predict protein functions, indicating a growing interest in leveraging advanced computational methods for biological applications.
  2. Bayesian Approaches for Complex Data:
    There is an emerging focus on Bayesian methodologies for analyzing complex genomic data, particularly in the context of population stratification and multi-factor experiments, showcasing the versatility and robustness of Bayesian inference in genetics.
  3. Integrative Pathway and Network Analysis:
    The trend towards integrative analyses that combine gene expression, miRNA, methylation, and other data types for pathway analysis is on the rise, reflecting a broader interest in understanding the intricate regulatory networks involved in diseases.
  4. High-Throughput Data Challenges:
    Emerging themes include addressing the challenges associated with high-throughput data, such as batch effects and sample size estimation, which are crucial for ensuring the reliability of genomic studies.
  5. Statistical Inference in Synthetic Datasets:
    The exploration of statistical inference methodologies using synthetic datasets, such as antibody-antigen interactions, indicates a growing interest in developing robust statistical frameworks that can be tested and validated in controlled environments.

Declining or Waning

While 'Statistical Applications in Genetics and Molecular Biology' continues to be a leading journal in statistical methodologies for genetic research, certain themes have shown a decline in prominence over recent years. This may reflect shifts in research priorities or the maturation of specific methodologies.
  1. Traditional Statistical Methods:
    There is a noticeable decline in the publication of papers focusing on traditional statistical methods that do not incorporate modern computational approaches or high-dimensional data analysis, as the field moves towards more innovative and complex methodologies.
  2. Single-Omics Analysis:
    Research specifically focused on single-omics analysis (e.g., genomics alone) appears to be waning, as the trend shifts towards integrative studies that combine multiple omics layers for a more comprehensive understanding of biological systems.
  3. Basic Genetic Association Studies:
    The frequency of papers solely dedicated to basic genetic association studies, particularly those using simpler models without advanced statistical techniques, has decreased, reflecting an increased interest in more sophisticated modeling approaches.

Similar Journals

CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE

Empowering Researchers with Rigorous Insights
Publisher: WILEYISSN: 0319-5724Frequency: 4 issues/year

Canadian Journal of Statistics - Revue Canadienne de Statistique is a prestigious publication in the field of statistics, managed by Wiley. Since its inception in 1973, this journal has served as an essential resource for researchers, practitioners, and students, offering insights into a diverse range of statistical methodologies and applications. With its impact reflected in its 2023 categorization as Q2 in Statistics and Probability and Q3 in Statistics, Probability and Uncertainty, the journal stands out among its peers, exemplifying rigorous standards in empirical research. The journal's ISSN is 0319-5724 and its E-ISSN is 1708-945X, providing a robust platform for the dissemination of knowledge in the field. While it does not offer open access, the journal remains highly regarded and well-cited, contributing significantly to the advancement of statistical theory and practice. As it continues to publish cutting-edge research through to 2024, the Canadian Journal of Statistics is a must-read for anyone seeking to stay informed on the latest trends and developments in statistics.

STATISTICA SINICA

Pioneering Insights for Data-Driven Decisions
Publisher: STATISTICA SINICAISSN: 1017-0405Frequency: 4 issues/year

STATISTICA SINICA, published by the esteemed STATISTICA SINICA organization, stands as a premier journal in the fields of Statistics and Probability, boasting a significant impact within the academic community. With an ISSN of 1017-0405 and E-ISSN of 1996-8507, this journal has evolved from its inception in 1996, continuing to publish cutting-edge research through 2024. As recognized by its recent categorization in Q1 quartiles in both Statistics and Probability and Statistics, Probability and Uncertainty for 2023, it ranks among the top journals in its discipline, meriting attention from researchers and practitioners alike. Despite lacking open access options, it delivers rigorous, peer-reviewed articles that contribute to the advancement of statistical science. With its base in Taiwan, and a dedicated editorial team located at the Institute of Statistical Science, Academia Sinica, Taipei, STATISTICA SINICA continues to be a vital resource for statisticians, data scientists, and related professionals seeking innovative methodologies and insights within this dynamic field.

STATISTICA NEERLANDICA

Connecting researchers with cutting-edge statistical advancements.
Publisher: WILEYISSN: 0039-0402Frequency: 4 issues/year

STATISTICA NEERLANDICA is a prestigious peer-reviewed journal published by Wiley, focusing on the fields of statistics and probability. Established in 1946 and addressing key issues in statistical theory and its applications, the journal has significantly contributed to the development of modern statistical practices. With an impressive Q2 categorization in both Statistics and Probability, as well as Statistics, Probability, and Uncertainty, STATISTICA NEERLANDICA stands out within its field, ranking in the 62nd percentile among its peers in mathematics, specifically in statistics and probability. Researchers, professionals, and students can benefit from its rigorous scholarship and innovative methodologies, aiding in the advancement of statistical science. Although the journal does not operate under an open access model, it maintains a commitment to disseminating high-quality research, making it a vital resource for those engaged in statistical inquiry.

PLoS Genetics

Empowering researchers through open access to genetic innovation.
Publisher: PUBLIC LIBRARY SCIENCEISSN: 1553-7404Frequency: 12 issues/year

PLoS Genetics, published by the PUBLIC LIBRARY SCIENCE, is a leading open-access journal dedicated to advancing the field of genetics, molecular biology, and related disciplines. With its ISSN of 1553-7404, this esteemed journal has been offering unrestricted access to its content since 2005, fostering a global community of researchers, professionals, and students. Situated in the United States, its contributions can be found at 1160 Battery Street, Ste 100, San Francisco, CA 94111. As of 2023, PLoS Genetics proudly holds a Q1 ranking in multiple categories including Cancer Research, Ecology, Evolution, Behavior and Systematics, Genetics, and Molecular Biology, underscoring its impact in these vital scientific areas. The journal's commitment to disseminating high-quality research is reflected in its impressive Scopus rankings, with notable positions in various fields of study, ensuring that it remains a crucial resource for cutting-edge research and innovation. By providing an open-access platform, PLoS Genetics not only enhances the visibility of genetic research but also encourages collaborations and the sharing of knowledge that can lead to significant breakthroughs in science.

STATISTICS

Advancing statistical science for a brighter future.
Publisher: TAYLOR & FRANCIS LTDISSN: 0233-1888Frequency: 6 issues/year

STATISTICS is a distinguished journal published by Taylor & Francis Ltd, dedicated to advancing the field of statistical science since its inception in 1985. With a strong focus on both the theoretical and practical aspects of Statistics and Probability, this journal serves as a vital platform for researchers, professionals, and students seeking to disseminate their findings and contribute to critical discussions in the discipline. Although categorized in the Q3 quartile for both Statistics and Probability and Statistics, Probability and Uncertainty, the journal's commitment to quality research is evidenced by its inclusion in relevant Scopus rankings. It holds respectable positions, ranked #132/168 in Decision Sciences and #219/278 in Mathematics. By providing a venue for high-quality research articles and reviews, STATISTICS aims to foster innovation, reinforce methodological advancements, and address contemporary challenges in statistical applications. The journal does not currently offer open access, but it is widely distributed, ensuring that significant research reaches the communities that need it most. Researchers are encouraged to submit their work to this essential resource that continues to shape the landscape of statistical inquiry.

Algorithms for Molecular Biology

Innovating solutions for the future of molecular biology.
Publisher: BMCISSN: Frequency: 1 issue/year

Algorithms for Molecular Biology, published by BMC, is a premier Open Access journal dedicated to advancing the field of molecular biology through innovative computational methods. Since its inception in 2006, the journal has provided a vital platform for researchers to share their findings and methodologies, covering a diverse range of topics at the intersection of applied mathematics, computational theory, and molecular biology. With a notable impact factor reflected in its Scopus ranks, including a Q2 classification in both applied mathematics and computational theory, as well as Q3 in molecular and structural biology, the journal plays an essential role in this rapidly evolving discipline. The wide accessibility of articles published under the Open Access model ensures that research findings reach a global audience, fostering collaboration and innovation amongst scientists and professionals alike. As we look towards converging years from 2006 to 2024, Algorithms for Molecular Biology continues to uphold the highest standards of scientific integrity and excellence, reinforcing its status as a key resource for those engaged in the profound complexities of molecular biology.

BIOMETRICAL JOURNAL

Advancing the intersection of Medicine and Statistics.
Publisher: WILEYISSN: 0323-3847Frequency: 6 issues/year

BIOMETRICAL JOURNAL is a prestigious academic publication dedicated to advancing the fields of Medicine and Statistics. Published by WILEY since its inception in 1977, this journal plays a critical role in disseminating cutting-edge research and methodologies that bridge the gap between statistical theory and real-world medical applications. With an impressive Q1 ranking in both Medicine (miscellaneous) and Statistics, Probability and Uncertainty, it is recognized for its high-impact contributions to the scientific community. The journal actively encourages submissions that utilize innovative statistical techniques to address complex biomedical issues, making it an essential resource for researchers, professionals, and students aiming to enhance their understanding of quantitative approaches in health and medicine. Although the journal is not open access, its rigorous peer-review process guarantees the quality and relevance of published works, further establishing its significance in the academic landscape.

Statistical Analysis and Data Mining

Unlocking Insights Through Statistical Innovation
Publisher: WILEYISSN: 1932-1864Frequency: 6 issues/year

Statistical Analysis and Data Mining is a leading journal published by WILEY, dedicated to exploring the latest advancements in statistical methods and data mining techniques. With an ISSN of 1932-1864 and an E-ISSN of 1932-1872, this journal serves as a significant platform for researchers and professionals in statistical analysis, computer science applications, and information systems. Covering a wide range of topics from innovative analytical methodologies to emerging data mining algorithms, the journal aims to disseminate high-quality research that contributes to the evolving landscape of data science. Ranked in the Q2 category for the fields of Analysis, Computer Science Applications, and Information Systems in 2023, it emphasizes its relevance and impact within academia. While it offers limited Open Access options, the insights shared in this publication are integral for those wishing to stay ahead in fast-paced research and data-driven industries. Since its inception in 2008 and continuing through 2024, Statistical Analysis and Data Mining invites submissions that reflect rigorous empirical research coupled with practical implications, making it a vital resource for the academic community.

Statistics in Biosciences

Unlocking Biological Mysteries with Statistical Expertise
Publisher: SPRINGERISSN: 1867-1764Frequency: 3 issues/year

Statistics in Biosciences is a distinguished journal published by Springer, focusing on the innovative interplay between statistical methodologies and biosciences. Established in 2009, this journal aims to provide a platform for the dissemination of cutting-edge research in statistical applications within biochemistry, genetics, and molecular biology. With an impressive impact factor and a distinguished ranking in multiple categories, including Q2 in Biochemistry, Genetics and Molecular Biology (miscellaneous) and Q3 in Statistics and Probability, it serves as a crucial resource for researchers, professionals, and students seeking to deepen their understanding of statistical applications in biological contexts. The journal is accessible through traditional subscription models, ensuring that high-quality research remains available to a wide audience. Featuring contributions that advance statistical theory and application in the biosciences, Statistics in Biosciences is committed to fostering collaboration and innovation in a rapidly evolving scientific landscape.

Statistical Methods and Applications

Unveiling robust methodologies for real-world impact.
Publisher: SPRINGER HEIDELBERGISSN: 1618-2510Frequency: 5 issues/year

Statistical Methods and Applications is a leading journal published by SPRINGER HEIDELBERG, dedicated to advancing the field of statistics and its applications in various domains. With an ISSN of 1618-2510 and an E-ISSN of 1613-981X, this journal serves as a vital resource for researchers and professionals looking to explore innovative statistical methodologies and their practical implications. The journal has demonstrated a notable influence within the scholarly community, ranked Q3 in both Statistics and Probability and Statistics, Probability and Uncertainty categories as of 2023. Covering a scope that spans from its inception in 1996 to the present, Statistical Methods and Applications provides robust platforms for empirical studies, theoretical advancements, and applied statistics. Although currently not open access, the journal is well-regarded for its rigorous peer-review process and commitment to high-quality research, making it an essential read for anyone dedicated to enhancing their statistical knowledge and expertise.