BIOMETRICS

Scope & Guideline

Charting New Frontiers in Medicine and Statistics

Introduction

Immerse yourself in the scholarly insights of BIOMETRICS with our comprehensive guidelines detailing its aims and scope. This page is your resource for understanding the journal's thematic priorities. Stay abreast of trending topics currently drawing significant attention and explore declining topics for a full picture of evolving interests. Our selection of highly cited topics and recent high-impact papers is curated within these guidelines to enhance your research impact.
LanguageMulti-Language
ISSN0006-341x
PublisherWILEY
Support Open AccessNo
CountryUnited Kingdom
TypeJournal
Convergefrom 1946 to 1951, from 1965 to 2024
AbbreviationBIOMETRICS / Biometrics
Frequency4 issues/year
Time To First Decision-
Time To Acceptance-
Acceptance Rate-
Home Page-
Address111 RIVER ST, HOBOKEN 07030-5774, NJ

Aims and Scopes

The journal 'BIOMETRICS' focuses on the application of statistical methods to biological and health-related data, emphasizing the development and implementation of innovative statistical techniques for analyzing complex datasets. Its core areas include causal inference, survival analysis, and biostatistics, with a strong emphasis on methodological advancements that support empirical research in various fields.
  1. Causal Inference:
    Research in this area encompasses the development of methods to draw causal conclusions from observational and experimental data, including techniques like propensity score matching and instrumental variable analysis.
  2. Survival Analysis:
    This includes statistical methods for analyzing time-to-event data, particularly in clinical trials and epidemiological studies, with a focus on developing robust models that account for censoring and time-varying covariates.
  3. Bayesian Methods:
    The journal publishes works that apply Bayesian statistical methods to a wide range of problems, including hierarchical modeling, Bayesian nonparametrics, and empirical Bayes approaches.
  4. High-Dimensional Data Analysis:
    This area focuses on the development of statistical techniques to handle high-dimensional datasets, particularly in genomics and neuroimaging, addressing challenges like sparsity and multicollinearity.
  5. Statistical Modeling and Inference:
    The journal emphasizes the creation of new statistical models and inference techniques that enhance the understanding of complex biological processes and improve decision-making in healthcare.
  6. Machine Learning Integration:
    Research that integrates machine learning techniques with traditional statistical methods is increasingly featured, particularly for predictive modeling and causal inference in large datasets.
Recent publications in 'BIOMETRICS' indicate a strong trend towards innovative methodologies that address contemporary challenges in data analysis. Several emerging themes have been identified, reflecting the journal's responsiveness to the evolving landscape of statistical science.
  1. Causal Mediation Analysis:
    This theme focuses on understanding the pathways through which treatments affect outcomes, utilizing advanced statistical techniques to elucidate causal relationships in complex datasets.
  2. Machine Learning and AI in Biostatistics:
    The integration of machine learning techniques into biostatistical research is on the rise, with publications exploring applications in predictive modeling and feature selection for high-dimensional data.
  3. Personalized Medicine and Individualized Treatment Effect Estimation:
    Emerging research emphasizes the development of statistical methods that enable personalized treatment strategies, particularly in clinical research, tailoring interventions based on individual characteristics.
  4. Data Integration Techniques:
    Increasing emphasis is placed on methods for integrating diverse data sources, such as electronic health records and genetic data, to enhance the robustness of statistical inferences.
  5. Spatial Statistics and Epidemiology:
    There is a growing focus on spatial statistical methods for analyzing disease spread and environmental health data, reflecting the importance of spatial considerations in public health research.
  6. Robustness and Sensitivity Analysis:
    Research that investigates the robustness of statistical methods and the sensitivity of conclusions to assumptions is gaining prominence, highlighting the need for transparency and rigor in statistical practice.

Declining or Waning

While 'BIOMETRICS' continues to evolve and adapt to emerging trends in statistics and data science, certain areas of focus have seen a decline in publication frequency. This shift may reflect changing research priorities and the emergence of new methodologies.
  1. Traditional Frequentist Methods:
    There has been a noticeable decrease in the publication of studies relying solely on traditional frequentist approaches, as the field increasingly embraces Bayesian and machine learning methods.
  2. Basic Descriptive Statistics:
    Papers focusing primarily on basic descriptive statistics or simple hypothesis testing have become less common, as researchers seek to apply more sophisticated analytical techniques.
  3. Non-Parametric Methods:
    Although still relevant, the frequency of publications centered on traditional non-parametric methods appears to be waning, possibly due to the rise of more flexible parametric and semi-parametric approaches that accommodate complex data structures.
  4. Single-variable Regression Models:
    Research focusing exclusively on single-variable regression models is declining as the complexity of data and the need for multivariable approaches grow.
  5. Standard Meta-Analysis Techniques:
    While meta-analysis remains important, the basic methodologies have become less prominent as new, more nuanced approaches to synthesizing evidence from multiple studies gain traction.

Similar Journals

Electronic Journal of Statistics

Pioneering Insights in Statistics and Probability
Publisher: INST MATHEMATICAL STATISTICS-IMSISSN: 1935-7524Frequency:

Electronic Journal of Statistics, published by INST MATHEMATICAL STATISTICS-IMS, is a premier open-access platform dedicated to the field of statistics and probability, with a remarkable track record since its inception in 2007. With an ISSN of 1935-7524, this journal has quickly established itself as a leading resource within the top Q1 category in both Statistics and Probability, as well as Statistics, Probability and Uncertainty, highlighting its significance and impact in the academic community. The journal’s commitment to disseminating high-quality research allows researchers, professionals, and students to access valuable findings and methodologies that contribute to the advancement of statistical sciences. With its convergence set to continue until 2024, the Electronic Journal of Statistics remains a vital source for scholars looking to enrich their knowledge and engage with cutting-edge statistical theories and applications.

BIOMETRICAL JOURNAL

Advancing the intersection of Medicine and Statistics.
Publisher: WILEYISSN: 0323-3847Frequency: 6 issues/year

BIOMETRICAL JOURNAL is a prestigious academic publication dedicated to advancing the fields of Medicine and Statistics. Published by WILEY since its inception in 1977, this journal plays a critical role in disseminating cutting-edge research and methodologies that bridge the gap between statistical theory and real-world medical applications. With an impressive Q1 ranking in both Medicine (miscellaneous) and Statistics, Probability and Uncertainty, it is recognized for its high-impact contributions to the scientific community. The journal actively encourages submissions that utilize innovative statistical techniques to address complex biomedical issues, making it an essential resource for researchers, professionals, and students aiming to enhance their understanding of quantitative approaches in health and medicine. Although the journal is not open access, its rigorous peer-review process guarantees the quality and relevance of published works, further establishing its significance in the academic landscape.

STATISTICS AND COMPUTING

Innovating statistical theory for a data-driven world.
Publisher: SPRINGERISSN: 0960-3174Frequency: 1 issue/year

Statistics and Computing is a premier journal published by Springer, dedicated to advancing the fields of statistics and computational theory. With a strong focus on interdisciplinary research, this journal covers a broad spectrum of topics including, but not limited to, statistical methodologies, computational algorithms, and the latest advancements in data analysis. As of 2023, it proudly holds a Q1 ranking in multiple categories including Computational Theory and Mathematics and Statistics and Probability, underscoring its significant influence and recognition within the academic community. The journal's impact is further demonstrated by its commendable positions in Scopus ranks, making it a valuable resource for researchers, professionals, and students alike. Published in the Netherlands, Statistics and Computing is known for its rigorous peer-review process and commitment to quality, ensuring that only the most impactful research is disseminated to the global audience. Submissions from a diverse range of backgrounds are encouraged, fostering an inclusive environment for innovation and collaboration in the statistics and computing realm.

TECHNOMETRICS

Pioneering Innovations in Modeling and Simulation
Publisher: TAYLOR & FRANCIS INCISSN: 0040-1706Frequency: 4 issues/year

TECHNOMETRICS, established in 1959 and published by Taylor & Francis Inc, serves as a premier journal in the fields of applied mathematics, modeling and simulation, and statistics and probability. With its ISSN number 0040-1706 and E-ISSN 1537-2723, the journal has successfully converged over its decades-long history and is recognized for its substantial contributions to the quantitative analysis and application of statistical methods. TECHNOMETRICS is proud to maintain a distinguished reputation, ranking in the Q1 category for 2023 across its relevant fields, and positioning itself within the top 86th percentile in Mathematics _ Statistics and Probability as per Scopus rankings. While this journal currently does not operate under an open access model, it remains a crucial resource for researchers, professionals, and graduate students seeking insights and advancements in the realm of statistical methodologies and applications. Its commitment to disseminating high-quality research ensures it stands as an invaluable platform for innovation and scholarly discourse within the statistical community, making it essential reading for anyone interested in the evolution of applied statistical techniques.

COMPUTATIONAL STATISTICS

Exploring innovative techniques in statistical analysis and computation.
Publisher: SPRINGER HEIDELBERGISSN: 0943-4062Frequency: 4 issues/year

COMPUTATIONAL STATISTICS, published by Springer Heidelberg, is a prominent international journal that bridges the fields of computational mathematics and statistical analysis. Since its inception in 1996, this journal has served as a critical platform for disseminating high-quality research and advancements in statistical methodologies and computational techniques. Operating under Germany's esteemed scholarly tradition, it holds a commendable Q2 ranking in key categories such as Computational Mathematics and Statistics and Probability, reflecting its significant impact and relevance in the academic community. Although it does not offer Open Access, the journal remains a vital resource for researchers, professionals, and students seeking to enhance their understanding of the intricate interplay between computation and statistical inference. Each issue features rigorously peer-reviewed articles that contribute to the development of innovative methodologies and applications, thereby solidifying its role in shaping the future of computational statistics.

Statistics in Biosciences

Empowering Bioscience Research through Statistics
Publisher: SPRINGERISSN: 1867-1764Frequency: 3 issues/year

Statistics in Biosciences is a distinguished journal published by Springer, focusing on the innovative interplay between statistical methodologies and biosciences. Established in 2009, this journal aims to provide a platform for the dissemination of cutting-edge research in statistical applications within biochemistry, genetics, and molecular biology. With an impressive impact factor and a distinguished ranking in multiple categories, including Q2 in Biochemistry, Genetics and Molecular Biology (miscellaneous) and Q3 in Statistics and Probability, it serves as a crucial resource for researchers, professionals, and students seeking to deepen their understanding of statistical applications in biological contexts. The journal is accessible through traditional subscription models, ensuring that high-quality research remains available to a wide audience. Featuring contributions that advance statistical theory and application in the biosciences, Statistics in Biosciences is committed to fostering collaboration and innovation in a rapidly evolving scientific landscape.

STATISTICAL METHODS IN MEDICAL RESEARCH

Transforming health data into actionable insights.
Publisher: SAGE PUBLICATIONS LTDISSN: 0962-2802Frequency: 6 issues/year

STATISTICAL METHODS IN MEDICAL RESEARCH is a leading academic journal dedicated to advancing the field of statistical methodologies as they apply to medical research. Published by SAGE Publications Ltd, this prestigious journal focuses on innovative statistical techniques that are pivotal for health-related data analysis and interpretation. With its Q1 ranking in Epidemiology, Health Information Management, and Statistics and Probability as of 2023, it stands out as a vital resource for researchers and practitioners alike. The journal, which has been in circulation since 1992, is widely recognized for its robust contributions to evidence-based medicine and public health, ensuring that practitioners have access to cutting-edge research. Although it currently does not offer Open Access options, the high-impact nature indicated by its rankings and percentile positions solidifies its importance as a go-to source for statistical theories and applications in health research. Researchers, healthcare professionals, and students are encouraged to explore the rich content of this journal to stay abreast of the latest advancements and methodologies.

Statistical Analysis and Data Mining

Empowering Researchers with Cutting-Edge Methodologies
Publisher: WILEYISSN: 1932-1864Frequency: 6 issues/year

Statistical Analysis and Data Mining is a leading journal published by WILEY, dedicated to exploring the latest advancements in statistical methods and data mining techniques. With an ISSN of 1932-1864 and an E-ISSN of 1932-1872, this journal serves as a significant platform for researchers and professionals in statistical analysis, computer science applications, and information systems. Covering a wide range of topics from innovative analytical methodologies to emerging data mining algorithms, the journal aims to disseminate high-quality research that contributes to the evolving landscape of data science. Ranked in the Q2 category for the fields of Analysis, Computer Science Applications, and Information Systems in 2023, it emphasizes its relevance and impact within academia. While it offers limited Open Access options, the insights shared in this publication are integral for those wishing to stay ahead in fast-paced research and data-driven industries. Since its inception in 2008 and continuing through 2024, Statistical Analysis and Data Mining invites submissions that reflect rigorous empirical research coupled with practical implications, making it a vital resource for the academic community.

Statistical Theory and Related Fields

Unlocking insights in statistical theory and related fields.
Publisher: TAYLOR & FRANCIS LTDISSN: 2475-4269Frequency: 4 issues/year

Statistical Theory and Related Fields is a cutting-edge journal published by Taylor & Francis Ltd, dedicated to advancing the field of statistical theory and its applications across diverse disciplines. With an open access policy introduced in 2022, this journal strives to make high-quality research accessible to a global audience. Its ISSN 2475-4269 and E-ISSN 2475-4277 ensure that it is widely recognized in the academic community. The journal covers crucial topics ranked across various categories, including Q3 in Analysis and Applied Mathematics, and has a growing presence in important subfields of mathematics, as evidenced by its Scopus rankings. This positions it prominently as a valuable resource for researchers, professionals, and students seeking to explore and contribute to statistical theory and its related fields. With a commitment to fostering rigorous theoretical research, as well as practical applications, the journal plays a significant role in shaping the dialogue and advancements in statistics, probability, and computational theories.

METRIKA

Cultivating a Legacy of Statistical Innovation.
Publisher: SPRINGER HEIDELBERGISSN: 0026-1335Frequency: 6 issues/year

METRIKA is a distinguished journal published by Springer Heidelberg, specializing in the field of Statistics and Probability. Since its inception in 1958, this journal has been pivotal in advancing the study and application of statistical methods, theory, and research. With an impressive academic legacy extending to 2024, METRIKA holds a Q2 category ranking in both Statistics and Probability and Statistics, Probability and Uncertainty, as of 2023, which underscores its significance within the scholarly community. Researchers and professionals will find that METRIKA not only emphasizes the recent developments and applications in the field but also aims to foster an interdisciplinary dialogue among statisticians and data scientists. Its contributions are invaluable for those seeking to navigate the complexities of statistical methodologies. Although the journal primarily operates under a traditional access model, its commitment to excellence and relevance in statistical discourse ensures that it remains an essential resource for academics, practitioners, and students alike.